⑴ 已知超几何分布概率分布列,怎么求数学期望
数学期望就是分布列里的每个X与对应概率相乘,将所有乘的的积相加,和就是啦。
⑵ 数学期望怎么求
求解“数学期望”主要有两种方法:
只要把分布列表格中的数字 每一列相乘再相加 即可。
如果X是离散型随机变量,它的全部可能取值是a1,a2,…,an,…,取这些值的相应概率是p1,p2…,pn,…,则其数学期望E(X)=(a1)*(p1)+(a2)*(p2)+…+(an)*(pn)+…;
如果X是连续型随机变量,其概率密度函数是p(x),则X的数学期望E(X)等于
函数xp(x)在区间(-∞,+∞)上的积分。
⑶ 数学期望和分布列怎么求呢
1、只要把分布列表格中的数字,每一列相乘再相加,即可。
2、如果X是离散型随机变量,它的全部可能取值是a1,a2,…,an,…,取这些值的相应概率是p1,p2,…,pn,…,则其数学期望E(X)=(a1)(p1)+(a2)(p2)+…+(an)(pn)+…;
均匀分布的期望:均匀分布的期望是取值区间[a,b]的中点(a+b)/2。
均匀分布的方差:var(x)=E[X²]-(E[X])²。
(3)根据分布列如何求数学期望扩展阅读:
用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。
因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局或后两局中任意赢一局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;
而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。
可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。
参考资料来源:网络-分布列
参考资料来源:网络-数学期望
⑷ 求数学期望
求解“数学期望”主要有两种方法:只要把分布列表格中的数字 每一列相乘再相加 即可。如果X是离散型随机变量,它的全部可能取值是a1,a2,…,an,…,取这些值的相应概率是p1,p2…,pn,…,则其数学期望E(X)=(a1)*(p1)+(a2)*(p2)+…+(an)*(pn)+…;如果X是连续型随机变量,其概率密度函数是p(x),则X的数学期望E(X)等于 函数xp(x)在区间(-∞,+∞)上的积分。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
⑸ 怎么求分布列和数学期望
二项分布b(n,p) EX=np Var=np(1-p)
泊松分布P(λ) EX=λ Var=λ
负二项分布Nb(r,p) EX=r/p Var=r(1-p)/(p^2)
指数分布Exp(λ) EX=1/λ Var=1/λ
正态分布N(μ,σ^2) EX=μ Var=σ^2
均匀分布U(a,b) EX=(a+b)/2 Var=[(b-a)^2]/12
数学期望E(X)是一个常数,还有E(a+b)=E(a)+E(b)
可能是要知道这个:E[(X-E(X))^2]=E[X^2-2*E(X)*X+(E(X))^2]
=E(X^2)-2*E(X)*E(X)+[E(X)]^2
=E(X^2)-[E(X)]^2
⑹ 根据分布函数求数学期望
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数等,因而称这随机变量是连续型随机变量。
变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。
数学期望:
在概率论和统计学中,数学期望作为试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
⑺ 数学期望的计算公式,具体怎么计算
公式主要为:
性质3和性质4可以推到到任意有限个相互独立的随机变量之和或之积的情况。
参考资料:数学期望-网络
⑻ 知道X的分布列,怎样求绝对值X的数学期望
正态分布的纵坐标值对应的是概率密度(恒大于0),所以|x|=x。
有|x|的期望与x相等,都等于u。
好久没接触这个了,不知道记错了没