导航:首页 > 数字科学 > 生活中的数学包括什么

生活中的数学包括什么

发布时间:2022-09-04 11:04:05

⑴ 生活中的数学有哪些急

生活中的数学

作者:佚名 文章来源:网络 点击数:196 更新时间:2006-1-2

学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

⑵ 生活中涉及到数学知识有哪些

1、数学几何知识在生活中的应用

数学已逐渐成为了设计与构图的主要工具,其不但属于建筑设计的智力资源,还是降低技术差错以及建设实验的有效方式。

比例,以及和比例存在着紧密联系的布局、均衡以及尺度等均属于组成建筑美感的重要因素。正确、和谐的尺度与比例则属于体现建筑结构的主要条件,特别是对黄金分割比例的应用能够让建筑物所具备的美感达到极致。

2、数学统计知识在生活中的应用

统计工作、统计资料和统计科学。统计工作、统计资料、统计科学三者之间的关系是:统计工作的成果是统计资料,统计资料和统计科学的基础是统计工作,统计科学既是统计工作经验的理论概括,又是指导统计工作的原理、原则和方法。

3、数学不等式在购买中的应用

去水果店买苹果,购买苹果方式不一样:每次花一样的钱,不管苹果的价格是怎样的,只买这么多钱的苹果;每次就买同样重量的苹果,也不管苹果的价格怎样。那么,可能就有一个问题提出来了:在购买相同次数情况下,哪种方式的买苹果的平均价格最少,这就涉及到不等式的应用。

4、数学概率知识在生活中的应用

它反映随机事件出现的可能性(likelihood)大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。概率在生活中的应用非常广泛,如抽奖、体彩、工厂次品率等的估算。

例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数。

5、数学利率知识在生活中的应用

信用卡渠道在银行规定的期限内归还资金,一旦超过了规定期限,则就是根据时间的长短对利息进行收取。在对利息进行计算的过程中,就会运用到数学利率,若熟练的掌握这方面的知识,那么就能够通过数学利率来计算各大银行信用卡在逾期利息方面的收费标准。

⑶ 生活中的数学内容是什么

生活中的数学内容是如下:

1、风扇的扇叶绕着中心旋转:过一点有无数条直线。

2、三角形的支架:三角形具有稳定性。

3、四边形的推拉门:四边形具有不稳定性。

4、速度、时间、路程三者的函数关系。

5、用坐标表示地理位置

6、买彩票是否能中奖,概率问题。

7、风筝飞翔平稳是轴对称图形的性质的应用。

⑷ 什么是生活中的数学

日常生活中需要用数字计算的都叫数学,即数字的学问。比如,一度电四毛五分钱,你家每天用五度电,需要多少钱?这就是生活中的数学。

⑸ 生活中的数学有哪些

生活中的数学包括纳税问题、票价问题、销售利润问题、方案设计问题、节约用水问题、测量问题等等。日常的生活生产中常需要运用数学中的代数知识解决税务计算、票务交易、销售盈利等问题,在建筑测量等领域里也需要用到图形相关知识。

一、纳税问题

例1 依法纳税是公民应尽的义务。根据我国税法规定,公民全月工资、薪金所得不超过929元不必纳税,超过929元的部分为全月应纳税所得额,此项税款按下表累加计算:

全月应纳税所得额 税率

不超过500元部分 5%

超过500元至2000元的部分 10%

超过2000元至5000元的部分 15%

…… ……

某人本月纳税150.1元。则他本月工资收入为多少?

解析:解答本题首先要弄清题意读懂图表,从中应理解税款是分段计算累加求和而得的。因为500×5%<150.1<2000×10%,所以可以判断此人的全月纳税应按表中第一档和第二档累加计算。设此人的本月工资为x元。根据题意得:

500×5%+( -929-500)×10%=150.1

解得, =2680

即此人的本月工资是2680元。

二、票价问题

例2 某音乐厅五月决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的 。若提前购票,则给予不同程度的优惠。在五月份内,团体票每张12元,共售出团体票的 ;零售票每张16元,共售出零售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?

根据题意,得

解之,得:

答:六月份零售票应按每张19.2元定价。

三、销售利润问题

例3 某企业生产一种产品,每件成本400元,销售价为510元,本季度销售m件。为了进一步扩大市场,该企业决定下季度销售价降低4%,预计销售量将提高10%。要使销售利润(销售价-成本价)保持不变,该产品每件的成本价应降低多少元?

解析:解答本题的关键是要弄清降低、提高的百分数的含义。设该产品每件的成本价应降低x元,则每件降低后的成本是( )元,销售价为510(1-4%)元,根据题意得,

[510(1-4%)-( )](1+10%)m=(510-400)m

解之,得x=10.4

答:该产品每件得成本价应降低10.4元

四、方案设计问题

例4 某牛奶加工厂有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元。该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨;但受人员限制,两种加工方式不可同时进行,又受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。为此,该厂设计了两种可行性方案:

方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;

方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。

你认为选择哪种方案获利最多,为什么?

解析:本题看似很复杂,限制条件较多,但如将此题分解为分别求出方案一、方案二的总利润就很容易解答。

若选择方案一,总利润=4×2000+(9-4)×500=10500(元)

若选择方案二,设4天内加工酸奶x吨,则加工奶片(9-x)吨,根据题意,得

解之,得x=7.5

总利润1200×7.5+2000×1.5=12000(元)

比较方案一、方案二所获得的总利润可知,选择方案二获利多。

五、节约用水问题

据《北京日报》报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的 ,是世界人均占有量的 。问全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米?

根据题意,得解为2400立方米、9600立方米。

⑹ 生活中有哪些数学

学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到
,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给
讲到同样一个问题时,学生们就会套用
来计算。评论说,由此可见,
的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈
,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须
,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的
能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活
,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

⑺ 生活中的数学有哪些

比如我假设一个几乎每天都会发生的场景:你今天早上骑自行车去上学,顺路去买个早餐,然后碰到了一个同学,接着和他一起走路去学校,因为走得慢,所以一不小心迟到了... 这个生活场景中的数学有:

1、骑自行车的时候你有想过用脚蹬一圈脚踏板自行车行走了多少米吗?我们可以去测量车轮的半径,再用圆的周长公式求出来。或者是用一条绳子铺在地上测量,或者你还有其他的办法。

2、然后你看到旁边的同学骑自行车比你骑得快,你有想过你是怎么判断谁快谁慢吗?相同的速度比较路程?还是相同的路程比较速度?当然都可以...

3、你去买早餐的时候,发现你每天吃的面包涨价了,今天的钱没带够,你很尴尬。但是你有想过为什么会涨价吗?原来是老板精心计算过这个面包定价几元可以获得最高的利润。举个例子:

面包店老板经营面包店三个月发现,某种面包成本价2元,售价5元,每天可以卖100个,如果售价每增加1元,面包就会少卖5个,那么此面包涨价多少元最合适呢。我们可以用二次函数的方式去求解。

设涨价x元,则每个面包盈利为5+x-2,每天可以售出100-5x个。根据:总盈利=每一个面包的盈利×售出个数,可列函数:y=(3+x)(100-5x);再利用顶点式即可求出具体当x为多少时,盈利最大。

4、今天上学的这段路程,你知道到底是在哪一段花的时间最多吗?画个平面直角坐标系,横坐标为时间,纵坐标为离家的路程,就能一目了然。

5、迟到的时候需要在执勤人员那里登记,要求写下年级班级姓名。这样学校就会知道这个星期哪个班的迟到人数最多,哪个班迟到人数最少。也是简单的统计学问题。

我只是在陈述一件很常见的事情,数学就无时无刻地出现在我们的视野。圆的周长、路程公式、二次函数、方程、平面直角坐标系、统计等。

⑻ 生活中用到数学的有哪些

1、数学加减乘除的计算。如商品的买卖,日期的计算,时间的计算。
2、投资理财。利息的计算、股票、保险等方面。
3、面积计算。住房、占地、种地、种花等。
4、体积容积的计算。家具、汽车、房屋空间等等。
5、工资、支出管理。

⑼ 什么是生活中的数学

日常生活中需要用数字计算的都叫数学,即数字的学问。

比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。

数学来源于生活,生活中处处有数学。教学时要善于挖掘生活中的数学素材,让数学贴近生活,使学生感受到数学的实用性,对数学产生亲切感。

(9)生活中的数学包括什么扩展阅读

生活中的数学应用:

1、求面积:例如:在一个高为4 m长为6 m的楼梯表面铺地毯,楼梯宽2m,求地毯的面积。

许多学生家里楼梯上都铺设了地毯,要买多少就要计算地毯长度,从图中可以看出应用平移的知识来解答简单方便,把楼梯步中横线往下移可组成AC,纵线往左移可组成BC,这样地毯长为4+6=10米,面积为2×10=20平方米。

2、求概率:概率是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率。

3、手指计数

人类的十个手指是个天生的“计数器”。原始人不穿鞋袜,再加上十个足趾,计数的范围就更大了。至今,有些民族还用“手”表示“五”,用“人”表示“二十”,据推测,“十进制”被广泛运用,很可能与手指计数有关。

⑽ 日常生活中的数学知识有哪些

日常生活中的数学知识有如下:

1、抽屉原理:

如果我们去参加一场婚礼,人数超过367人,那么其中必然有生日相同的人(并非同年)。

这就是抽屉原理。

把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。

由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。

运用到了数学的抽屉原理。

2、猫的面积:

冬天,猫睡觉时总是把身体抱成一个球形,是因为这样身体散发的热量最少。

在数学中,体积一定,表面积最小的物体是球体。

猫缩成一个球体,可以减小和外界接触的面积,降低热交换的速度,减少热量损失的速度,节省能量,保持体温。

运用到了数学的面积学。

3、四叶草叫“幸运草 ”:

三叶草,学名苜蓿草,是多年生草本植物,一般只有三片小叶子,叶形呈心形状,叶心较深色的部分亦是心形。

四叶草是由三叶草基因突变而产生的,它只占其中的十万分之一。也就说在十万株苜蓿草中,你可能只会发现一株是‘四叶草’,因为机率太小。因此“四叶草”是国际公认为幸运的象征。

运用到了数学的概率学。

4、车轮都是圆的而不是其他形状:

圆的中心叫圆心,圆上任何一点到圆心的距离都是相等的。把车轮做成圆形,车轴在圆心上,当车轮在地面滚动时,车轴离地面的距离,总是等于车轮半径。

因此,车里坐的人,就能平稳地被车子拉着走。假如车轮变了形,不成圆形了,轮上高一块低一块,到轴的距离不相等了,车就不会再平稳。

运用到了数学的圆心知识。

5、风扇的叶片都是奇数:

这是因为奇数的叶片组合能比偶数的叶片组合带来更多的性能优势。

如果一旦叶片数量为偶数片设计,并形成对称的排列方式的话,那么不但使得风扇自身的平衡性难以调整,而且容易使风扇在高速转时产生更多的共振,从而导致叶片无法长时间承受共振产生的疲劳,最终出现叶片断裂等情况。

因此,轴流风扇的设计多为不对称的奇数片叶片设计。

同样的设计理念在日常使用的电风扇或螺旋桨直升飞机的设计中都有体现。如果风扇是三叶结构,叶片制作较宽且叶片根部较强,各个部位的密度的等需均匀;如果为五叶结构,叶片较窄一些,厚度、强度也相对较低。

运用到了数学的奇偶数概念。

阅读全文

与生活中的数学包括什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1359
华为手机家人共享如何查看地理位置 浏览:1050
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1417
中考初中地理如何补 浏览:1308
360浏览器历史在哪里下载迅雷下载 浏览:707
数学奥数卡怎么办 浏览:1397
如何回答地理是什么 浏览:1031
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1709
西安瑞禧生物科技有限公司怎么样 浏览:991
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1661
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1067