❶ 快速算平方根的技巧
比较小的数用二分法,大数用以下方法:
述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除 256,所得的最大整数是 4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.
一般学生用不着学这个,大部分习题求的平方根都是整数,常用数,需要识记的,学生应当可以适当识记一些常用数的平方根
❷ 平方根计算方法
【平方根计算步骤】
将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;
根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(20×3除256,所得的最大整数是 4,即试商是4);
用所求的平方根的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
用同样的方法,继续求平方根的其他各位上的数.
如遇开不尽的情况,可根据所要求的精确度求出它的近似值.
【开平方】
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。在实数范围内a必须大于或等于零,即a为非负数;
❸ 求一个数的平方根怎么算
开方的计算步骤:
1、将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;
2、根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3、从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4、把求得的最高位数乘以2去试除第一个余数,所得的最大整数作为试商(2×30除256,所得的最大整数是 4,即试商是4);
5、用商的最高位数的2倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(2×30+4)×4=256,说明试商4就是平方根的第二位数);
6、用同样的方法,继续求平方根的其他各位上的数.
对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。实际中这种算法也是计算机用于开方的算法。
❹ 数学上的平方根该怎么算
有一种笔算开平方的办法:
⒈从个位起向左每隔两位为一节,若带有小数从小数点起向右每隔两位一节,用“,”号将各节分开;
⒉求不大于左边第一节数的完全平方数,为“商”;
⒊从左边第一节数里减去求得的商,在它们的差的右边写上第二节数作为第一个余数;
⒋把商乘以20,试除第一个余数,所得的最大整数作试商(如果这个最大整数大于或等于10,就用9或8作试商);
⒌用商乘以20加上试商再乘以试商.如果所得的积小于或等于余数,就把这个试商写在商后面,作为新商;如果所得的积大于余数,就把试商逐次减小再试,直到积小于或等于余数为止.
❺ 平方根怎么计算
67081的平方根=259
算法1:
假设被开放数为a,如果用sqrt(a)表示根号a 那么((sqrt(x)-sqrt(a/x))^2=0的根就是sqrt(a)
变形得
sqrt(a)=(x+a/x)/2
所以你只需设置一个约等于(x+a/x)/2的初始值,代入上面公式,可以得到一个更加近似的值,再将它代入,就得到一个更加精确的值……依此方法,最后得到一个足够精度的(x+a/x)/2的值。
如:计算sqrt(5)
设初值为2
1)sqrt(5)=(2+5/2)/2=2.25
2)sqrt(5)=(2.25+5/2.25)/2=2.236111
3)sqrt(5)=(2.236111+5/2.236111)/2=2.236068
这三步所得的结果和sqrt(5)相差已经小于0.001
或者可以用二分法:
设f(x)=x^2-a
那么sqrt(a)就是f(x)=0的根。
你可以先找两个正值m,n使f(m)<0,f(n)>0
根据函数的单调性,sqrt(a)就在区间(m,n)间。
然后计算(m+n)/2,计算f((m+n)/2),如果它大于零,那么sqrt(a)就在区间(m,(m+n)/2)之间。
小于零,就在((m+n)/2,n)之间,如果等于零,那么(m+n)/2当然就是sqrt(a)。这样重复几次,你可以把sqrt(a)存在的范围一步步缩小,在最后足够精确的区间内随便取一个值,它就约等于sqrt(a)。
❻ 平方根的公式
平方根公式如图:
如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数(radicand)。求一个非负数a的平方根的运算叫做开平方。
结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。一个正数如果有平方根,那么必定有两个,它们互为相反数。
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数;0只有一个平方根,就是0本身;负数有两个共轭的纯虚平方根。
❼ 平方根公式是什么
平方根公式
结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。
一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
(7)数学中如何计算平方根扩展阅读
求平方根的迭代公式为:X(n+1)=(Xn+a/Xn) /2。要求前后两次求出的x的差的绝对值小于10的负5次幂。
#include<stdio.h>
#include<math.h>
intmain()
{
doublex1, x2;
doublea;
scanf("%lf",&a);
x2=1.0;
do{
x1=x2;
x2=(x1+a/x1)/2.0;
}while(fabs(x1 - x2)>=0.00001);
printf("%.3lf",x2);
return0 ;
❽ 平方根是如何计算的
述求平方根的方法,
称为笔算开平方法,
用这个方法可以求出任何正数的算术平
方根,它的计算步骤如下:
1
.
将被开方数的整数部分从个位起向左每隔两位划为一段,
用撇号分开
(
竖式中
的
11'56)
,分成几段,表示所求平方根是几位数;
2
.根据左边第一段里的数,求得平方根的最高位上的数
(
竖式中的
3)
;
3
.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成
第一个余数
(
竖式中的
256)
;
4
.
把求得的最高位数乘以
20
去试除第一个余数,
所得的最大整数作为试商
(3×
20
除
256
,所得的最大整数是
4
,即试商是
4)
;
5
.用商的最高位数的
20
倍加上这个试商再乘以试商.如果所得的积小于或等
于余数,
试商就是平方根的第二位数;
如果所得的积大于余数,
就把试商减小再
试
(
竖式中
(20×
3
+
4)×
4
=
256
,说明试商
4
就是平方根的第二位数
)
;
开平方可以手算的呀。 取第一位,是几的平方,然后写上去,相减, 余数在用求得到的第一个数的20倍来除,然后再加上得数, 反正有方法的
❾ 平方根的计算公式是什么
平方根公式:x=√a。
结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。
一个正数如果有平方根,那么必定有两个,它们互为相反数,显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
算数平方根和平方根的联系:
1、前提条件相同:算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。
2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。
3、0的算术平方根和平方根相同,都是0。