⑴ 数学考研有哪些方向
《数学》网络网盘免费下载
链接:
数学考研历年题目
⑵ 研究生应用数学的研究方向有哪些
专业轮廓
应用数学是数学5个二级学科中内涵宽泛的一个。严格说来,计算、运筹、统计都是应用类的数学学科,但我们现在所指的应用数学的涵义要窄得多,基本上只分为两个大方向:计算机图形图像(CAGD)和小波分析。CAGD主要指运用现代数学的方法进行图像图形理论及其应用的研究,具体在图像变换和压缩、图形的变形和生成等方向,还包括微分方程、计算几何和科学计算等方向。计算机图形图像主要包括图像处理、计算机图形学、计算机辅助几何设计、科学计算、医学图像重建。小波分析就是指分形几何和小波分析,还有逼近论。
[关键词] 前景
sy1133(2004级应用数学博士):应用数学是交叉学科,所以我觉得只要有应用背景的数学问题都可以看作是这个学科的发展,从这个角度看,应用数学的发展是非常繁盛的。
林彬彬(2007级应用数学硕士研究生):应用数学在国内起步比较晚,但很热门,不过国内发展水平和国际还有一定差距。应用数学专业的毕业生发展方向很多,涉及IT、信息、计算机图形的行业都是不错的选择。
⑶ 关于数学专业考研方向,应用数学、计算数学、基础数学、运筹学、概率论,这些专业都有什么区别
关于数学专业考研方向,应用数学、计算数学、基础数学、运筹学、概率论,这些专业的什么区别:
基础数学:
基础数学重视学生数学基础知识和专业基础知识的学习,注重对他们的创造性和创新能力的培养。除基础课外,主要开设实变函数、泛函分析、偏微分方程、微分几何、拓扑学、微分流形、数论基础、群与表示、代数几何等等课程,具体会因学校而异。
计算数学:
计算数学科学与工程计算是伴随着计算机的出现而迅猛发展起来的新学科,涉及众多交叉学科。其主要研究内容包括:
运用现代数学理论与方法解决各类科学与工程问题;分析和提高计算的可靠性、有效性和精确性;研究各类数值软件的开发技术。
主要课程包括数值代数、数值分析、偏微分方程数值解、最优化方法、软件基础、软件工程、计算机图形学等课程。主要内容包括代数方程、线性代数方程组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性、收敛性和误差分析等理论问题。
概率论与数理统计:
统计学是研究数据的搜集、整理、分析和推断的科学与艺术。概率与统计研究各种随机现象的本质与内在规律性以及人文、社会、经济和自然科学等各学科中各种类型数据的科学的综合处理及统计推断方法。
主要课程包括概率论、数理统计、应用随机过程、测度论、应用随机分析、统计计算、应用多元统计分析、应用回归分析、应用时间序列分析等。本专业有概率论、统计学两个培养方向。
运筹学与控制论:
研究各种系统的结构、运作、设计和调控的现代数学学科,是应用数学与系统科学、信息科学的结合点,从众多的可行方案中优选某些目标最优的方案,在社会与经济生活的合理规划、最优设计、最优控制和科学管理中起着十分重要的作用。面对实际中千差万别的问题,一般采用4个步骤:确定目标、制定方案、建立模型、制定解法。
运筹学方法的广泛使用以及迅猛发展过程中,形成了丰富的抽象模型,发展出多个分支:包含线性规划、非线性规划、整数规划、组合规划等在内的数学规划;图论;网络流;决策分析;排队论;可靠性数学理论;库存论;对策论;搜索论等等。
信息科学:
信息科学运用近代数学方法和计算机技术解决信息科学领域中的问题,应用十分广泛。专业方向包括信号与信息处理、模式识别、图像处理、人工智能、软件开发方法和理论计算机科学等研究方向。
金融数学:
金融数学除了要求学生必修数理统计、金融数学引论、应用随机过程、寿险精算、证券投资学、衍生证券基础之外, 还要求学生选修数学或经济与金融的一些课程。
不仅要求学生具有扎实的数学和统计基础,还要熟练的数据分析技能,较好地掌握金融专业的基本知识,文理并茂,全面发展。
数据科学与大数据:
数据科学是运用统计学、计算机科学、应用数学等学科提供的现代数据分析工具和方法从数据中自动寻找规律或者有价值信息的交叉学科。运用概率统计、现代计算、人工智能等综合知识探索来自工业、生物医疗、金融证券和社交网络等众多领域的较大规模或结构复杂数据集的高效存储、高效管理、高效概括、深入分析和精准预测的科学和艺术。
⑷ 应用数学学科的研究方向
(一)主要研究内容
非线性偏微分方程是现代数学的一个重要分支,无论在理论中还是在实际应用中,非线性偏微分方程均被用来描述力学、控制过程、生态与经济系统、化工循环系统及流行病学等领域的问题。利用非线性偏微分方程描述上述问题充分考虑到空间、时间、时滞的影响,因而更能准确的反映实际。本方向主要研究非线性偏微分方程、H-半变分不等式、最优控制系统的微分方程理论及其在电力系统的应用。
⒈非线性偏微分方程的研究:我们主要研究偏微分方程解的存在唯一性(和多解性)及稳定性;偏微分方程的初值问题、初边值问题的整体解(包括周期解和概周期解)的存在性及渐近性;平衡解的存在性,尤其是当问题依赖于某些参数时平衡解的分叉结构,以及平衡解的稳定性问题;非线性方程的数值解。
2.H-半变分不等式的研究:建立具有极大单调算子扰动的多值(S)型和伪单调型映象的广义度理论,广义不动点指标理论和具有非凸、不可微泛函的非线性发展型H-半变分不等式理论,由此来研究含间断项的非线性偏微分方程。
3.最优控制系统的微分方程理论及其在电力系统的应用:主要研究与电力生产有关的控制系统的理论和应用。首先提出了对Banach空间中抽象非线性发展方程所描述的最优控制系统的研究。引进非光滑分析,研究最优控制系统的微分方程,利用变分不等式理论研究多值问题、数值计算等,所获理论成果应用于电力系统的许多最优控制问题(如:电力系统励磁调节器传递函数的辨识、牛顿最优潮流的数学模型等)。
(二)研究方向的特色
⒈ 变分不等式理论与能量泛函的凸性密切相关,由于现代科学技术的需要,特别是研究自由边界和固体力学问题的需要,传统的方法往往都无法解决这类问题,人们对H-半变分不等式进行研究,研究涉及现代分析及应用、偏微分方程以及科学计算等众多领域中亟待解决和发展的重要课题。
2.该研究是现代数学与电力生产的交叉学科研究课题,它对电力生产及管理有着十分重要的理论指导意义和实际应用价值,为控制系统设计、分析和计算都可提供一些重要的理论依据。在应用数学学科的这一研究领域中本课题属于国内外前沿性研究工作。
(三)可取得的突破
1.深入研究空间、时间、时滞对解的性质的影响,诸如静态解、周期解的存在性、解的存在性、渐近性等问题;寻求它们在含间断项的非线性偏微分方程方面的突破。
2.寻求和发现新的处理非单调、非凸不可微能量泛函的方法(如建立Ishikawa迭代序列收敛准则),建立发展型方程G-收敛准则,寻求可行的光滑方法将算子方程光滑化,创建新的先验估计方法。
3.应用现代数学所获得的理论,研究最有控制系统的微分方程,为控制系统设计、分析和计算提供一些重要的理论依据和方法。 (一)主要研究内容
拓扑学是数学的一个重要而比较年轻的学科分支,可以分成一般拓扑学,代数拓扑学,微分拓扑学三个大分支。50年代后期以来,拓扑学的发展及其对数学的发展和其他学科发展起推动作用。本方向主要研究拓扑学中奇点理论、拓扑空间及其映射的性质以及分支理论中的若干课题及应用。
⒈ 奇点理论是微分拓扑学的一个重要分支。20世纪由着名法国数学家R.Thom 开创的奇点理论,经 J.N.Mather,V.I. Arnold 等数学家的杰出工作已取得了巨大的成就。在几何学应用方面,几何微分方程及其几何解方面的应用、应用奇点理论和接触几何研究偏微分方程问题,都取得了十分重要的结果。
我们致力于这些崭新课题的研究,在一阶偏微分方程组几何解奇点的分类、奇异解的性质和几何解的实现等方面,做了许多工作,作为第一和第二主要成员参加国家自然科学基金项目2项,主持省自然科学基金项目1项,主持省教育厅重点基金项目1项,主办小型国际学术活动1次。也取得了一些达到国际先进或国内领先水平的结果。由于这些研究,我们曾多次应邀参加国际学术会议。获得湖南省科技进步二等奖。我们将继续这方面的研究。
⒉ Golubistky 等人于1979引入了应用奇点理论研究微分方程分支问题,近年来国内外已经出现了大量的理论和应用研究成果。我们从一开始就紧跟研究前沿的步伐,用奇点理论研究了几类非线性边值问题,得到若干关于分支解存在性的结果,并应邀参加国际学术会议进行报告。这方面还有大量的工作可以进行,特别是可以与电力系统稳定性问题的研究相结合。
⒊ 拓扑空间及其映射的性质是一般拓扑学研究的重要分支之一,主要研究拓扑空间的结构和拓扑空间之间的映射的有关性质。近年来我们主要研究有关度量空间的映射像的若干性质。并取得了一些引人注目的成果,在国外重要学术刊物上发表或待发表论文多篇。
(二)研究方向的特色
通常在奇点理论中研究Legendrian奇点不考虑对称性,而我们将等变奇点理论与Legendre奇点的研究结合起来。在对偏微分方程及其几何解的研究和分类研究中,我们侧重对更一般的方程分类,并试图对分类后几何解的性质的作进一步的研究,这在以往的研究中尚未及开展。特别,近十年来奇点理论应用于偏微分方程的几何理论这一领域中通常研究的是一阶方程,而今后的发展将必然以二阶偏微分方程为趋势,因此研究方向在研究方法、对象等方面都有创新意义和特色。
我们的研究需要将现代拓扑、微分方程与几何、代数相结合,并且还要借助计算机进行计算或验证,反映了现代数学研究不同分支互相参透的综合趋势,体现了数学的统一性,因而具有交叉学科研究性质。
此外拓扑学理论在计算机图形图像的应用在国际上开始的时间不长,还处于起步阶段,我们可以期待在方法上、理论上有所突破,有所创新。
(三)可能取得的突破
⒈ 在对偏微分方程及其几何解的研究和分类研究中,我们侧重对更一般的方程分类,并试图对分类后几何解的性质的作进一步的研究。
⒉ 用奇点理论研究非线性边值问题,争取对边界出现分支的问题取得成果。
⒊ 把对拓扑空间及其映射的性质的研究结果用于研究计算机图形图像及电力和交通工程中的应用问题。 (一)主要研究内容
在当今科学与工程计算中,存在大量的非线性优化、方程的求解、最小二乘和特征值计算等问题。如何借助于现代化的计算工具对这些问题设计出高效的计算方法,并应用于一些实际问题是我们的主要研究内容。我们的研究工作将集中在下列方面:
1.优化计算方法及其应用:研究约束非线性光滑与非光滑方程的数值求解方法,约束最优化问题的高效算法,理论上分析所建立数值方法的性质及实际计算表现。由于电力系统中的安全与稳定性可用非线性方程系统和优化模型描述,我们将运用数学上新的数值方法分析电力系统的安全和稳定性,以适应电力系统市场化改革的需要。
2.应用数值线性代数(也称矩阵计算)问题:它是科学与工程计算的核心,主要涉及三大问题:线性代数方程组问题,线性最小二乘问题和特征值问题。我们的研究工作将集中在大型线性方程组并行算法、病态方程组的预处理方法、结构矩阵的特征值和最小二乘问题的快速算法等方面。
3.约束矩阵方程问题:约束矩阵方程问题包括矩阵逆特征值问题、矩阵最小二乘问题、矩阵扩充问题及其最佳逼近问题等。我们将研究约束矩阵方程的可解性,解的性质,数值方法及在结构设计、动力系统模型修正等许多工程实际中的应用。
(二)研究方向的特色
1.在最优化计算方法的研究中,我们均考虑了约束情况,不仅使问题有一般的结构,且更符合实现应用背景。另外,电力系统安全稳定的应用分析,对推动当前电力工业的改革具有重大的现实意义。
2.矩阵计算所研究的内容与许多工程问题密切相关,尤其在信号处理方面,经常碰到大规模问题、病态问题和结构矩阵问题。因此,我们的研究无论在理论还是应用都很重要。
3.约束矩阵方程的研究既利用了矩阵理论的矩阵分块、分解和降阶等技术,又提出了新的矩阵和矩阵理论。
(三)可能取得的突破
1.建立约束非光滑方程系统的具有超线性收敛的数值方法;对大规模约束非线性优化问题根据解耦方法建立高效且有理论保证的算法;运用新的数学方法实现电力系统安全稳定运行中的可用输电能力、阻塞管理等问题的在线分析。
2.程应用中经常出现的一些特殊的矩阵计算问题设计有效的快速算法,并从理论上进行分析,形成高水平的学术成果。
3.新的矩阵集合约束下的矩阵方程或新类型矩阵方程的解的相关问题;提出新的高效数值方法;用已有的约束矩阵方程理论解决某些工程实际问题。
(四)主要学术带头人简介
童小娇:教授,博士,主要从事非线性方程系统和非线性优化问题数值方法、电力系统安全稳定性的研究。先后主持或参加了国家自然科学基金、湖南省自然科学基金、湖南省教育厅优秀青年等多项课题的研究,并参加了国家973项目《中国大电力系统灾变防治与经济运行若干重大问题的研究》的工作,近6年来在重要刊物上发表论文30多篇。 (一)主要内容
我们在马尔可夫过程、随机分析、数理金融、应用数理统计等领域具有雄厚的研究基础,取得了大批在国内外颇具影响的重要研究成果。特别是李应求教授及其领导的课题组在两参数马氏过程、随机环境中的马氏链及分支过程和相关函数方程等方向上的科学研究;以及在 IC卡操作系统、IC卡应用集成技术的研究方面,在人力资源管理、电力负荷预报、交通随机模型、金融风险模型等领域取得了卓有成效的应用。我们的研究工作将主要集中在下列方面:
1.随机环境中马氏链理论的研究:随机环境中马氏链是当代随机过程研究的热点,已取得了丰富的成果,但这些工作都有待深入和拓展。在这方面我们主要研究其一般理论如不可约性、常返性、瞬时性及其相应的链的性质,大偏差理论,遍历理论,有关开问题等;一些具体过程如随机环境中分枝过程、随机游动、单生链、超过程等的性质。我们在这方面的研究将进一步完善随机环境中马氏过程的整个理论体系。
2.两参数马氏过程理论研究:两参数马氏过程是当代随机过程研究的另一热点,已取得了丰富的成果,但目前研究进展缓慢,特别是两参数马氏过程样本轨道性质的研究。究其原因主要是由于此时过程的时间参数无全序关系,我们在单参数马氏过程研究中使用的首达时、无穷小算子等的方法已无法借鉴,需要引进新的概念和方法,但目前在此方面仍无突破性进展。
3.应用研究:课题组已成功地将概率统计应用于广西电力局短、中、长期电力负荷预测及其所属的桂林电力局短、中、长期电力负荷预测,取得了很好的经济效益和社会效益,我们将总结经验,继续做好这方面的应用研究。此外,我们目前正开展将概率统计应用于人力资源管理方面,图象处理方面和金融等国民经济领域中的应用研究。 (一)主要研究内容
本方向主要研究实、复分析中的几何函数论,亚纯函数的值分布论以及调和分析中的若干课题及应用。
⒈几何函数论是一个经典的研究领域,曾经吸引了许多数学家的高度关注。自上世纪七、八十年代以来,随着卷积理论、微分从属、分数次微积分算子以及极值点、支撑点理论的应用,几何函数论的研究又重新焕发了青春。我们致力于这些崭新课题的研究,在卷积算子、微分从属、分数次微积分算子与单叶函数论的结合研究方面,做了大量工作,也取得了许多重要结果,曾获得湖南省优秀自然科学论文一等奖。我们将继续这方面的探索,并已在将有关结论向拟共形映射和多复变函数拓广方面做了一些工作。
⒉亚纯函数的值分布论自上世纪二十年代创立以来,一直是复分析研究中的一个热门课题。特别是近一、二十年来,关于亚纯函数的唯一性理论,微分方程的复振荡理论更是吸引了众多数学工作者的关注。我们从一开始就紧跟研究前沿的步伐,目前在亚纯函数的4值问题的研究方面取得了突破性进展,在将亚纯函数的唯一性与微分方程的复振荡的结合研究方面,做了一些尝试性的工作。
⒊调和分析是分析数学的主要分支之一,它主要是利用分析的工具研究函数空间的结构和积分算子在函数空间上的有界性,交换子就是其中的一类重要算子。由于交换子可用于刻划某些函数空间,并在微分方程理论中有许多重要应用,因此研究与各种积分算子相关联的多线性算子(交换子的非平凡推广)在各类函数空间中的有界性,就成为近些年来十分活跃和热门的研究课题。我们主要研究关于多线性算子的加权有界性,多线性算子在Hardy空间和Herz空间的有界性等等,并取得了一些引人注目的成果,在国内外重要学术刊物上发表论文多篇。
⒋复分析理论在交通、电力工程中的应用。我们曾经应用复分析理论研究了路面温度场的问题,解决了一个弹性体中的温度应力分布问题,以此研究作为一个子课题的“七﹒五”攻关项目曾获得交通部科技进步一等奖。我们将继续开展这方面的研究工作。
(二)研究方向的特色
⒈几何函数论与微分方程、特殊函数的结合研究,共形映射与拟共形映射的结合研究,可以突破一些技术难关,从而能更为有效的获得一些经典的结果和新结果,创立一些新方法。
⒉亚纯函数的唯一性理论与微分方程的复振荡研究的结合,有可能获得微分方程复振荡理论的一些新结果。
⒊关于多线性算子的各种有界性的研究,是调和分析中的一个最新研究课题。
⒋着眼于上述几个分支的相互关联、相互渗透关系的探索与研究,以期从一个更高的角度来从事相关课题的研究,从而在方法上,理论上有所突破,有所创新。
(三)可能取得的突破
⒈深化微分从属与单叶函数的结合研究的理论与应用,并由此解决单叶函数论中的几个难题。
⒉将亚纯函数的唯一性理论应用于微分方程的复振荡理论的研究,获得其振荡性质的新结果。
⒊获得若干多线性算子在一些函数空间上的有界性结果。 (一)主要研究内容
代数学是数学的一个重要的基础分支。传统的代数学有群论,环论,模论,域论,线性代数与多重线性代数(含矩阵论),有限维代数,同调代数,范畴等。目前,代数学的发展有几个特征:其一是与其它数学分支交叉,例如与几何,数论交叉产生了代数几何,算术几何,代数数论等目前数学主流方向,矩阵论与组合学交叉产生了组合矩阵论。其二是代数学与计算科学,计算机科学的交叉,产生了计算代数,数学机械化,代数密码学,代数自动机等新的方向。随着计算科学的发展,矩阵论仍处在发展的阶段,显示出其生命力。其三是一些老的重要代数学分支从代数学中独立出来形成新的数学分支,如李群与李代数,代数K理论。而一些老的代数学分支(如环论)己不是热点了。
1.矩阵几何及应用:目前矩阵几何的发展主要有三个方面:一是将矩阵几何的研究推广到有零因子的环上; 二是将矩阵几何基本定理中的条件化简或寻找其它等价条件,并找出特殊情况下的简单证明;三是将矩阵几何的研究范围扩大到保其它的几何不变量以及无限维算子代数中。我们近几年的研究重点在环上矩阵几何与算子保持问题。
2.环上矩阵论及应用:四元数与四元数矩阵论在物理学,力学,计算机科学,工程技术中具有较好的应用,受到国内外工程技术界的重视。矩阵方程在很多实际问题(例如控制论, 稳定性理论)中有重要的作用,也是长期的研究热点。我们将研究环上矩阵论与四元数矩阵论的一些尚未解决的重要问题,带约束条件的矩阵方程求解理论,并讨论它们在实际问题中的应用。
3.群论及应用:群论是代数学的基础,也是物理学的基本工具。典型群是群的一种很重要的类型。我们将研究环上典型群的一些重要问题,用群的算术条件(如:群的阶及元素的阶,特征标次数,共轭类长等)刻画群的结构,并对它们进行分类。研究数域或整数环上一般线性群的有限子群,用群的某些算术条件刻画群的结构并对其进行分类。
4.Clifford代数,Hopf代数及应用:目前,Clifford代数,Hopf代数己成为物理学中的热门工具。二维Clifford代数就是四元数。我们研究Clifford代数, Hopf代数的一些重要的问题,并讨论它们在实际问题中的应用。
5.代数学在计算机科学与信息科学的应用:随着信息化进程与因特网的深入与飞速发展,信息安全问题日益重要,保护网上信息安全是一个极为重要的新课题。主要采用加密技术与数字鉴定,实际上是数学技术,主要用到代数学,组合数学与数论。图像压缩处理是信息处理中的一个困难和极为重要的问题,我们在代数学方面有较好的基础。
(二)研究方向的特色
1.矩阵几何是数学大师华罗庚开创的一个数学研究领域,并由中国数学家万哲先院士等继承和发展,属于代数几何的范畴,“具有中国特色”。目前,我们在此领域的研究处于国内一流水平。
2.随着计算机科学的发展,环上矩阵论成为重要的数学工具,也是今后代数学研究的重要方向之一。
3.随着互联网的迅猛发展,信息安全日益重要,而近年来代数自动机是计算机科学与代数学交叉的一个研究方向。因此,它们的基础理论研究特别重要。
(三)可取得的突破
继续保持矩阵几何与矩阵论研究的国内一流水平,根据我院的实际情况,发展群论,Clifford代数,Hopf代数,代数自动机,代数密码学等新的研究方向,争取在这些新的方向上得到一些有学术影响的成果。
⑸ 现代数学除了数论、拓扑学、近世代数、微分拓扑、泛函分析外还有哪些领域
顺着你说的这几个进一步,,算子理论,算子代数,非交换几何。各种表示论,量子群,李理论,代数K理论。代数拓扑。代数几何,算术代数几何,非交换代数几何。各种流形。复分析,复几何。等等等等,不胜枚举。
⑹ 现代数学的发展趋势有哪些
现代数学已经由以往的面貌脱胎换骨:极限理论让微积分变得完善,集合论让数学变得稳固等20世纪是数学大发展的世纪。数学的许多重大难题得到完满解决, 如费尔玛大定理的证明,有限单群分类工作的完成等, 从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫. 希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的着名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向, 其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特, 许多当代世界着名的数学家在过去几年中整理和提出新的数学难题, 希冀为新世纪数学的发展指明方向。 这些数学家知名度是高的, 但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向, 而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日, 千年数学会议在着名的法兰西学院举行。 会上,98年费尔兹奖获得者伽沃斯(Gowers)以“数学的重要性”为题作了演讲, 其后,塔特(Tate)和阿啼亚 (Atiyah) 公布和介绍了这七个“千年大奖问题”。 克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。 每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。 现在先只列出一个清单:这七个“千年大奖问题”是: NP 完全问题, 郝治(Hodge) 猜想, 庞加莱(Poincare) 猜想, 黎曼(Rieman)假设,杨-米尔斯 (Yang-Mills) 理论, 纳卫尔-斯托可(Navier-Stokes)方程, BSD(Birch and Swinnerton-Dyer)猜想。 “千年大奖问题”公布以来, 在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。 可以预期, “千年大奖问题” 将会改变新世纪数学发展的历史进程
⑺ 数学与应用数学考研方向有哪些
一、运筹学专业
运筹学用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。而在应用方面,多与仓储、物流、算法等领域相关。因此运筹学与应用数学、工业工程、计算机科学、经济管理等相关专业。
二、计算数学
计算数学方向主要内容包括代数方程、线性代数方程组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性、收敛性和误差分析等理论问题。
三、应用数学
应用数学专业培养学生掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。
四、金融方向
该方向主要培养具有坚实金融学理论基础和较高应用技能的专业人才,培养学生综合运用金融学、经济学、管理学、现代计量分析手段解决理论问题与实践问题的能力,使学生既了解国际金融业的前沿发展。可以适应金融管理部门、各类金融机构和研究机构的工作。
⑻ 数学专业考研方向有哪些
数学考研网络网盘免费下载
链接:
针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)。具体不同专业所使用的试卷种类有具体规定。
⑼ 现代数学研究什么
什么是数学?有人说:“数学,不就是数的学问吗?”
这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。
历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”
那么,究竟什么是数学呢?
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。
纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显着特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显着的特征。
高度的抽象性是数学的显着特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。
体系的严谨性是数学的另一个显着特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。
广泛的应用性也是数学的一个显着特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。
各门科学的“数学化”,是现代科学发展的一大趋势。
⑽ 数学研究哪些领域
数学研究的各领域 数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连着。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之着名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 结构许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及 数,且包含有非常着名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演着核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。 基础与哲学为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.” 集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。