导航:首页 > 数字科学 > 数学教学方法具有什么性质

数学教学方法具有什么性质

发布时间:2022-09-06 20:16:59

‘壹’ 高中数学课程的性质是什么

数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展.数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用.数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。

数学教育作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面、在推动社会进步和发展的进程中起着重要的作用。在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。

课程性质

高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。

高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。

高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。

高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。同时,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。

课程的基本理念

构建共同基础,提供发展平台 高中数学课程具有基础性,它包括两方面的含义:第一,在义务教育阶段之后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;第二,为学生进一步学习提供必要的数学准备。高中数学课程由必修系列课程和选修系列课程组成,必修系列课程是为了满足所有学生的共同数学需求;选修系列课程是为了学生的不同数学需求,它仍然是学生发展所需要的基础性数学课程。

提供多样课程,适应个性选择 高中数学课程具有多样性与选择性,使不同的学生在数学上得到不同的发展。为学生提供选择和发展的空间,为学生提供多层次、多种类的选择,以促进学生的个性发展和对未来人生规划的思考。

倡导积极主动、勇于探索的学习方式 高中数学课程倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式。这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程。同时,课程设立“数学探究”“数学建摸”等学习活动,为学生形成积极主动的、多样的学习方式进一步创造有利的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中,养成独立思考、积极探索的习惯。力求通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的历程,发展创新意识。

注重提高学生的数学思维能力 高中数学课程注重提高学生的数学思维能力,这是数学教育的基本目标之一。人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断。数学思维能力在形成理性思维中发挥着独特的作用。

发展学生的数学应用意识 当今知识经济时代,数学正在从幕后走向台前,数学和计算机技术的结合使得数学能够在许多方面直接为社会创造价值,同时,也为数学发展开拓了广阔的前景。高中数学课程提供基本内容的实际背景,反映数学的应用价值,开展“数学建摸”的学习活动,设立体现数学某些重要应用的专题课程。力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。

与时俱进的认识“双基” 随着时代的发展,特别是数学的广泛应用、计算机技术和现代信息技术的发展,数学课程设置和实施重新审视基础知识、基本技能和能力的内涵,形成符合时代要求的新的“双基”。

强调本质,注意适度形式化 形式化是数学的基本特征之一。在数学教学中,学习形式化的表达是一项基本要求,但是不能只限于形式化的表达,要强调对数学本质的认识, 高中数学课程力求返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。

体现数学的文化价值 数学是人类文化的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,高中数学课程提倡体现数学的文化价值,并在适当的内容中提出对“数学文化”的学习要求,设立“数学史选讲”等专题。

注重信息技术与数学课程的整合 现代信息技术的广泛应用正在对数学课程内容、数学教学、数学学习等方面产生深刻的影响。高中数学课程提倡实现信息技术与课程内容的有机整合,整合的基本原则是有利于学生认识数学的本质,鼓励学生运用计算机、计算器等进行探索和发现。

建立合理、科学的评价体系 现代社会对人的发展的要求引起评价体系的深刻变化。高中数学课程应建立合理、科学的评价体系,包括评价理念、评价内容、评价形式和评价体制等方面。评价既要关注学生数学学习的结果,也要关注他们数学学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中所表现出来的情感态度的变化。

课程目标

高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:

1.知识

获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.情感态度与价值观

提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辨证唯物主义和历史唯物主义世界观。

3.能力

提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

课程具体目标中的知识、情感态度与价值观、能力三个维度在课程实施过程中是一个有机的整体。

模块简介

高中数学课程包括五个必修模块,每个模块2学分、36学时。选修课程由系列1,系列2,系列3,系列4组成。系列1包括2个模块,每个模块2学分、36学时;系列2则是为希望在理工、经济等方面发展的学生设置的,包括3个模块,每个模块2学分、36学时;系列3由6个专题组成,每个专题1学分、18学时;系列4由10个专题组成,每个专题1学分、18学时。

模块

必修

模块

必修1:

集合、函数概念与基本初等函数

集合论是得国数学家康托在19世纪末创立的,集合语言是现代数学的基本语言。使用集合语言,可以简洁、准确地表达数学的一些内容。高中数学课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力。

函数是描述客观世界变化规律的重要数学模型。高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的始终。学生将学习指数函数、对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。

必修2:

立体几何初步、平面解析几何初步

几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。人们通常采用直观感知、操作确认、思维论证、度量计算等方法认识和探索几何图形及其性质。三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求。

解析几何是17世纪数学发展的重要成果之一,其本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在本模块中,学生将在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解解决几何问题的能力。

必修3:

算法初步、统计、概率

算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。

统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法,同时为统计学的发展提供了理论基础。在本模块中,学生将在义务教育阶段学习统计与概率的基础上,通过实际问题情境,学习随机抽样、样本估计总体、线性回归的基本方法,体会有样本估计总体及其特征的思想;通过解决实际问题,较为系统地经历数据收集与处理的全过程,体会统计思维与确定性思维的差异。学生将结合具体实例,学习概率的某些基本性质和简单的概率模型,加深对随机现象的理解,能通过实验、计算器(机)模拟估计简单随机事件发生的概率。

必修4:

三角函数、平面上的向量、三角恒等变换

三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。在本模块中,学生将通过实例,学习三角函数及其基本性质,体会三角函数在解决具有周期变化规律的问题中的作用。

向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。在本模块中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义。能用向量语言和方法表述和解决数学和物理学中的一些问题,发展运算能力和解决实际问题的能力。

三角恒等变换在数学中有一定的作用,同时有利于发展学生的推理能力和运算能力。在本模块中,学生将运用向量的方法推导基本的三角恒等变换公式,由此出发导出其他的三角恒等变换公式,并能运用这些公式进行简单的恒等变换

必修5:

解三角形、数列、不等式

学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些测量和几何计算有关的实际问题。

数列作为一种特殊的函数,是反映自然规律的基本数学模型。在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。

不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。建立不等观念、处理不等关系与处理等量问题是同样重要的。在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。

选修模块

选修1-1:

常用逻辑用语、圆锥曲线与方程、导数及其应用

正确地使用逻辑用语是现代社会公民应该具备的基本素质无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想。在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。

在必修课程学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。

微积分的创立是数学发展中的里程碑,它的发展及广泛应用开创了向近代数学过渡的新时期,它为研究变量与函数提供了重要的方法和手段。导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。

选修1-2:

统计案例、推理与证明、数系扩充及复数的引入、框图

学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。归纳、类比是合情推理常用的思维方法。培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。合情推理和演绎推理之间联系紧密、相辅相成。证明通常包括逻辑证明和实验、实验证明,数学结论的正确性必须通过演绎推理或逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。

数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生、发展的客观需求,复数的引入是中学阶段数系的又一次扩充。在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识、体会人类理性思维在数系扩充中的作用。

框图是表示一个系统各部分和各环节之间的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系。框图已经广泛应用于算法、计算机程序设计、工业流程的表述、设计方案的比较等方面,也是表示数学计算与证明过程中主要逻辑步骤的工具,并将成为日常生活和各门学科中进行交流的一种常用表达方式。在本模块中,学生将学习用“流程图”“结构图”等刻画数学问题以及其他问题的解决过程;并在学习过程中,体验用框图表示数学问题解决过程以及事物发生、发展过程的优越性,提高抽象概括能力和逻辑思维能力,能清晰地表达和交流思想。

选修2-1:

常用逻辑用语、圆锥曲线方程、空间中的向量与立体几何

正确地使用逻辑用语是现代社会公民应该具备的基本素质无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想。在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。

在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。

用空间向量处理立体几何问题,提供了新的视角。空间向量的引入,为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具。在本模块中,学生将在学习平面向量的基础上,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想象能力和几何直观能力。

选修2-2:

导数及其应用、推理与证明、数系的扩充与复数的引入

微积分的创立是数学发展中的里程碑,它的发展及广泛应用开创了向近代数学过渡的新时期,它为研究变量与函数提供了重要的方法和手段。导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。

“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。归纳、类比是合情推理常用的思维方法。培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。合情推理和演绎推理之间联系紧密、相辅相成。证明通常包括逻辑证明和实验、实验证明,数学结论的正确性必须通过演绎推理或逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。

数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生、发展的客观需求,复数的引入是中学阶段数系的又一次扩充。在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识、体会人类理性思维在数系扩充中的作用。

选修2-3:

计数原理、统计案例、概率

记数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。在本模块中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题。

学生将在必修课程学习概率的基础上,学习某些离散型随机变量分布列及其均值、方差等内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识。

学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

选修4-1:

几何证明选讲

几何证明选讲有助于培养学生的逻辑推理能力,在几何证明的过程中,不仅是逻辑演绎的程序,它还包含着大量的观察、探索、发现的创造性过程。本专题从复习相似图形的性质入手,证明一些反映圆与直线关系的重要定理,并通过对圆锥曲线性质的进一步探索,提高学生空间想象能力、几何直观能力和运用综合几何方法解决问题的能力。

选修4-2:

坐标系与参数方程

坐标系是解析几何的基础。在坐标系中,可以用有序实数组确定点的位置,进而用方程刻画几何图形。为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系。极坐标系、柱坐标系、球坐标系等是与直角坐标系不同的坐标系,对于有些几何图形,选用这些坐标系可以使建立的方程更加简单。

参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式。某些曲线用参数方程表示比用普通方程表示更方便。学习参数方程有助于学生进一步体会解决问题中数学方法的灵活多变。

本专题是解析几何初步、平面向量、三角函数等内容的综合应用和进一步深化。极坐标系和参数方程是本专题的重点内容,对于柱坐标系、球坐标系等只作简单了解。通过对本专题的学习,学生将掌握极坐标和参数方程的基本概念,了解曲线的多种表现形式,体会从实际问题中抽象出数学问题的过程,培养探究数学问题的兴趣和能力,体会数学在实际中的应用价值,提高应用

‘贰’ 数学教学方法具有什么性

需要将数学教学的方法与艺术性融合一体。
数学教学方法既是一门方法也是一门艺术。

‘叁’ 如何正确认识把握小学数学课堂教学的活动性质与特征

细揣摩教材,理解编者意图。
教师对教材的理解不仅要全面,而且要深刻。能否领会编者意图,是衡量教师理解教材深浅的一个重要标志。对编者意图领会得越深,越能充分发挥教材在教学中的作用。
教学过程是将教材的知识结构转化为学生认知结构的过程,教师在教学中要树立整体观念,从教材的整体入手通读教材,了解教材的编排意图,弄清每部分教材在整个教材体系中的地位和作用,用联系、发展的观点,分析处理教材。怎样理解编者的意图呢?主要是多问几个为什么。例题为什么这样设计呢?习题为什么这样编排呢?结论为什么这样引出呢?等等。经过这样一番思考之后,教师肯定会提高驾驭教材的能力。
例如,义务教育课程标准实验教科书一年级上册(人教版)在教学“9加几”时,课本中只提供了一幅学校运动会的全景图。这幅图究竟有什么作用?教学中应如何出示?先解决什么问题?再解决什么问题?都是教师教学前应该搞清楚的。
教学时,教师可以先用实物投影出示全景图,引导学生观察,并把观察到的结果说给组内的同学听。在学生初步感知图意的基础上,教师引导学生提出“学生们喝了一些饮料,还剩多少盒?”这一数学问题,把学生的注意力转移到计算方法上。教师启发学生自己想出计算方法,并在组内进行交流。学生可能出现三种算法:(1)数数法:1、2、3、4……12、13,一共有13盒。(2)接数法:箱子里有9盒,然后再接着数10、11、12、13, 一共有13盒。(3)凑十法:把外面的一盒饮料放在箱子里凑成10盒,10盒再加上剩下的3盒,一共是13盒。教师让学生比较各种算法,选择出自己喜欢的方法。然后,结合学具操作,使学生初步感知"凑十法",并从中体验出"凑十法"是比较简便的计算方法。最后,再利用全景图让学生提出其他数学问题。学生每提一个问题,教师就让学生说一说一共有多少人。对于9加几的问题,还要让学生说一说自己是怎样想的。这样安排教学,才能真正发挥全景图的作用。当然,有条件的学校,如果录制一段本校运动会的场面,动静画面结合起来,可能效果会更好。
2、找出教材的不足,主动驾驭教材。
数学教材是数学知识的载体,是学生在教学过程中的认识对象。数学教材是通用的、共性的,同时又具有简约化的特点。有的课时内容由于篇幅的限制,不可能提供详尽的学习材料,也不能呈现完整的教学过程,当然也就很难反映知识形成的全过程。教材不是完美无缺的,有的教材滞后于教育的发展,教材本身侧重于数学知识的传授和积累,侧重于数学技能的训练,忽视数学思想方法的培养,其呈现的是一个知识的静态结果,而没有体现知识形成的动态过程。所以,对于这样的教材,教师绝不能照搬照套,不要被它所提供的学习材料所束缚,而应在深入钻研教材的基础上,根据教材内容,遵循课程改革的新理念主动驾驭教材,合理调整教材,对教材进行教学法的加工。在使用教材时,我们既要尊重教材,又不局限于教材。
备课时,教师应反复研究教材,大胆改革教材中的不合理因素,适当增补调整教学内容,使学生知识与能力结构更趋合理,使之切合学生的实际,适应教学的需要。比如,可以对应用题的具体情节和数据作出适当的调整、改编,以学生熟悉的、感兴趣的、贴近他们生活实际的数学问题来取代教材中的例题。
例如,在教学“比的意义时,可以从北京申办2008年奥运会的一组数据引入。出示下面的表格:
教师提问:看到这个表格,你能提出哪些数学问题?这样安排,学生不但学习兴趣浓厚,而且教学效果良好,从中还能受到爱国主义教育。
3、正确区分教学内容和教材内容。
教材是落实教学大纲,实现教学计划的重要载体,也是教师进行课堂教学的主要依据。但教材内容和教学内容并不是等值的。因为教学内容来自于师生对课程内容与教材内容及教学实际的综合加工,不仅包括教材内容,而且还包括了师生在教学过程中的实际活动的全部,教材内容只不过是教学内容的的重要组成部分。况且,教材本身还有一个不断完善的过程。因此,在处理教材上,教师的任务在于“用教材教”,而不只是“教教材”。必须充分发挥自身的创造性,做到尊重教材与灵活处理教材相结合。一方面,教师要合理地利用教材,对教材内容有所选择、补充或调整,进行教学法加工,以达到优化教学内容的目的;另一方面,师生也可以根据教学要求,自己编制教材。
例如,在教学第十册“列方程解应用题”时,可通过让学生选择信息提出问题的方式使复习题、例题和尝试练习整体呈现。
首先出示以下信息:
①学校舞蹈队有23人
②学校合唱队有84人
③合唱队的人数比舞蹈队的3倍多15人
④合唱队的人数比舞蹈队的4倍少8人
然后让学生根据信息,提出问题,教师整理成应用题。
①学校舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人。合唱队有多少人?
②学校舞蹈队有23人,合唱队的人数比舞蹈队的4倍少8人。合唱队有多少人?
③学校合唱队有84人,合唱队的人数比舞蹈队的3倍多15人。舞蹈队有多少人?
④学校合唱队有84人,合唱队的人数比舞蹈队的4倍少8人。舞蹈队有多少人?
接下来,便可让学生用算术方法解答第①、②题(课本复习题),让学生用自己喜欢的方法尝试解答第③题(课本例题),最后将第④题作为练习题。
4、深入了解学生,找准教学的起点。
教学设计的对象是学生,教学设计的成效如何,将取决于对学生情况的了解程度。如果从实验的角度分析教学设计,那么课堂中的学生情况就是自变量,教学内容的组织,教学方案的选择、教学环节的调整等都必须随着学生这一自变量的变化而变化。数学教学要充分考虑学生的身心发展特点,结合他们的已有知识和生活经验设计富有情趣的数学教学活动。
例如,在低段教学中,教师应充分利用学生的生活经验,设计生动有趣、直观形象的数学教学活动,如运用讲故事、做游戏、直观演示、模拟表演等,激发学生的学习兴趣,让学生在生动具体的情境中理解和认识数学知识。又如,教学百分数应用题时,因其思路、解题方法和已学过的分数应用题基本相同,所以教学时,教师只需稍加引导,便可大胆放手让学生在已有知识的基础上自己想出解题方法,教师根本不用花过多的时间去讲解。一般来讲,年级越高,课堂教学也应该越开放。“先试后讲、先猜想再验证、先独立思考再集体交流”对于一些比较简单的知识教学,不失为一种行之有效的方法。
5、客观分析教材,把握每节课教学的重点、难点和关键。
当一节课的教学内容有几个知识点时,往往需要明确哪些是重点,哪些是难点,以免在教学时抓不住主要的基本的内容,而在次要的或者学生容易接受的内容上多花时间,或者面面俱到平均使用力量,影响重点、难点的理解和掌握,而达不到预定的教学效果。教学的重点是对教材来讲的,而教学的难点是对学生来讲的。
一般地说,数学的基本概念、法则、公式、性质都是教学的重点。确定教材的重点,要以教材本身为依据。瞻前顾后,溯源探流,研究所教的内容在整个知识系统中的地位和价值。在整个知识系统中,关系全局的这部分知识,可定为教材的重点。例如,低年级教学统计时,应把学生能够参与统计过程作为教学的重点。
所谓难点,就是多数学生不易理解和掌握的知识点。小学数学教材中,有的内容比较抽象,不易被学生理解;有的内容纵横交错,比较复杂;也有的内容本质属性比较隐蔽,或者体现了新的观点和新的方法,或者在新旧知识的衔接上呈现了较大的坡度,或相互干扰,易混、易错等。这种教师难教、学生难学、难懂、难掌握的内容以及学生学习中容易混淆和错误的内容,通常称之为教材的难点。教学难点要根据教材的广度和深度,学生的知识基础和心理特征来确定。难点有时和重点是一致的。例如,对一个数乘以分数的意义的理解,既是教学中的一个难点,同时也是教学中的一个重点。
教材中有些内容对掌握某一部分知识或解决某一类问题起到决定性的作用,这些内容就是教材的关键。作为教材的关键,它在攻克难点、突出重点过程中往往具有突破口的功能。一旦掌握好教材的关键,与其相关内容的教学就可以迎刃而解。
例如,教学用两位数除,关键是使学生掌握用两位数除两、三位数商一位数的试商方法,至于多位数的可依此类推。又例如,教学长方体的表面积,关键在于通过操作、直观使学生弄清一个长方体有哪三组相对的长方形面,根据长方体的长、宽、高确定每组长方形面的长和宽各是多少。这是发展学生空间观念的问题,教师抓住了这个关键,定会收到很好的教学效果。
6、展示知识的发生过程,让学生在参与中学习。
现代教育认为课堂教学首先不是知识的传递过程,而是学生的发展过程;首先不是教师的教授过程,而是学生的学习过程;首先不是教师教会的过程,而是学生学会的过程。从数学学科的特点看,学生所学的数学知识是前人思维的结果。学习这些知识,不是简单地吸收,而必须通过自己的思维,把前人的思维结果转化为自己的思维结果。这个转化,认知学派称之为“建构”,国际着名数学教育家弗赖登塔尔称之为“再创造”。也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行再创造,而不是把现成的结论灌输给学生。“建构”也好,“再创造”也好,其实质就是充分展示知识的发生过程,把静态的知识结论转化为动态的探索对象,让学生在探索未知领域的过程中,付出与前人发现这些知识所曾经付出的大体相同的智力代价,从而有效地实现知识训练智力的价值。
例如,在教学“圆柱的体积”时,我是这样进行的:教师首先让学生大胆猜想,圆柱体的体积可能等于什么?大部分学生猜测圆柱体的体积可能等于底面积×高。然后给每组同学提供不同的学习材料,让他们自己想办法加以验证。有的组将圆柱体玻璃容器中的水倒入长方体的容器中,再分别测量出长方体容器中水的长、宽、高,计算出了圆柱体玻璃容器中水的体积。有的组将圆柱体橡皮泥捏成长方体,计算出了橡皮泥的体积。有的组将圆柱体木块浸入长方体容器的水中,通过计算上升的水的体积计算出了圆柱体木块的体积。然后让学生比较报告单上圆柱体的底面积、高与体积的关系,使学生确信自己的猜想是正确的。最后让学生看书自学,按照书中介绍的方法利用手中的学具自己推导出圆柱体的体积公式。
7、让学生在不断“反思”中学习。
建构主义强调,学习不是简单地让学习者占有别人的知识,而是学习者主动地建构自己的知识经验,形成自己的见解。在学习过程中学习者不仅要不断监视自己对知识的理解程度,判断自己的进展与目标的差距,采取各种增进和帮助思考的策略,而且还要不断地反思自己的学习过程。
由于数学对象的抽象性、数学活动的探索性决定了小学生不可能一次性地直接把握数学活动的本质,必须要经过多次的反复思考、深入研究和自我调整才可能洞察数学活动的本质特征。就小学数学课堂教学而言,反思的内容主要有:对自己的思考过程进行反思,对解题思路、分析过程、运算过程、语言的表述进行反思,对所涉及的数学思想方法反思等。在数学活动中,当学生在探索过程中遇到障碍或出现错误时,教师可以提出一些针对性的、具有启发性的问题引导学生主动地反思探索过程;当数学活动结束后,要引导学生反思整个探索过程和所获得结论的合理性,以获得成功的体验。
例如,学习了“分数的基本性质”后,教师可让学生反思:分数的基本性质是怎样总结出来的?从中你受到了什么启发?学了分数的基本性质有什么作用?这样,就有助于学生对自身学习过程进行反思,促进学生学习能力、思维能力的提高。
8、努力挖掘教材中蕴涵的数学思想方法。
数学思想方法是数学知识不可分割的有机组成部分,小学数学教材中,蕴含了许多数学思想和方法,如极限思想、符号化思想、集合思想、转化、建模的思想以及猜想、验证的方法等。学生对数学的学习不单纯是知识的获得和反复的操练,贯穿始终的还有数学思想方法。如果说数学教材中的基础知识和基本技能是一条明线的话,那么蕴含在教材中的数学思想方法就是一条暗线。教师要注意数学思想方法的渗透,抓住教学内容中的有利因素,有意识地加以引导,使学生在潜移默化中掌握数学思想方法。
例如,在低年级“数的认识”的教学中,可以向学生渗透“集合思想”;在高年级教学“除数是小数的除法”和“多边形面积的计算”时,可以向学生渗透“转化”的思想。 添加评论
.

1.小学数学概念在性质上的特征
首先,它除了具有数学概念的特征外,还往往具有某些自然概念的痕迹;其次,针对儿童的认知特征,它常常经过了某种改造,以适应儿童的学习、掌握与运用。
2.小学数学概念在学习上的特征
其一,小学数学概念在组织上具有系统性的特征,这是由于数学自身的自然结构的精确性所决定的;其二,通过大量的直观材料,在引导学生进行充分的操作、观察、分类等感知活动的基础上来构建数学概念的;其三,以图或语言文字为主、并以描述的方式予以呈现概念。
3.儿童形成数学概念的主要途径
● 概念形成,简单地说,概念形成就是指学习者从大量的同类事物的不同例证中独立地发现并形成数学概念的过程。它包括感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念的运用阶段。
● 概念同化,简单地说,概念形成就是将概念用定义的方式直接呈现给学习者,而学习者利用认知结构中有关的概念来理解并形成新的概念的过程。它包括唤起认知结构中的相关概念、进一步抽象形成新概念、分离新概念的关键属性。
4.儿童学习数学概念的基本过程
对儿童来说,获得数学概念大致都要经历一个感知——表象——概念这样一个过程。首先,儿童面对大量直观材料,经过感觉纳受器,进入感知兴奋状态,提高多次的观察、比较、体验,由感知运动阶段进入形成表象阶段,再经过分析、综合,获得符号性表象 ,再经过抽象、概括,进入形成概念阶段。
5.儿童获得概念能力发展的基本特点
● 从获得一级概念为主发展到有能力获得二级概念;
● 概念的获得以“概念形成”为主逐渐发展到“概念同化”为主;
● 从认识概念的自身属性逐步发展到理解概念间的联系;
● 数学概念的建立受经验的干扰逐渐减弱;
● 数、形的分离发展到数、形的结合。
6.影响儿童概念学习的主要因素
● 经验对儿童数学概念学习的影响
● 语言对儿童数学概念学习的影响
小学数学课堂教学的活动的实质是认识、探究和应用。表象是双面互动,也就是指教师的教与学生的学。具体包括提出问题、确定解决问题的策略途径、构建模型(实物演示、画示意图、线段图等)、师生共同操作探究、得出科学结论、运用获得的知识解决实际问题、提出新的数学问题等活动过程。 这一系列的教学活动始终都是为了学生这一主体,使学生从模糊到清晰、从陌生到熟悉、从不会到会、从不能到能。
如何把握呢?应该从心理学的角度来阐述。小学生的认知特点主要有好奇、好动、从众、浮浅、容易遗忘、不够集中专注持久,作为活动的总设计师教师来说,有必要针对以上特点进行优质高效的教学设计,比如教具选择夸张的卡通造型、艳丽的色彩(对视觉的冲击力大)、多让学生动手操作、引入思辨(调动主动性)、引导鼓励学生向深层思考、把一个新知识点放到较大的知识背景中(温故知新、容易形成知识体系)、低年级适当嵌入分散教学、中高年级加强组织教学。

‘肆’ 数学教学方法有哪些

一、传统的数学教学方法

传统的数学教学方法,是指在长期的数学教学实践活动中形成的、至今仍行之有效的各种教学方法,其中包括讲解法、谈话法、演示法、讨论法等。

1.讲解法

讲解法是由教师对教学内容进行有系统地讲述的一种教学方法。其特点是以教师为主导,利用口头语言作为传递知识的基本工具,学生是知识信息的接受者。

讲解法的基本要求:

(1)科学性。讲解的内容要准确无误,即讲概念要清楚,把握好概念的内涵与外延;阐述命题证明、推理要合乎逻辑,思路和方法要明确、清晰。

(2)系统性。讲解要条理清楚、层次分明,重点突出,注意学生理解问题的认识规律,使讲授内容系统化。

(3)启发性。讲授中要引起学生的求知欲,激发学生思维活动。运用讲解法不等于“满堂灌”、注入式。教师的讲解要善于提出问题、创设问题情境,激发疑问,使学生与教师积极配合,主动参与学习活动。

(4)艺术性。讲解的语言要清晰、洗炼、准确、生动,尽量做到深入浅出,通俗而不失严谨。讲解语言音量适当,抑扬顿挫,富有情趣,快慢适当。

(5)情感性。讲授课容易让学生产生枯燥无味之感,因此,情感因素的注入和喧染是提高讲授效果的最佳方法。

讲解法的优点:能够保持教师在教学中的主导地位,教学时间和进度便于教师控制,并且所授内容能保持流畅与连贯;便于重点内容的分析、难点的突破,易于帮助学生抓住问题的关键,节约教学时间。


讲解法的缺点:教学中学生参与少,容易造成被动接受知识的状态,不利于能力的培养;不易照顾学生中思维反应快与慢的两端,只能面向中等学生。

2.谈话法

谈话法是教师根据教学内容和学生的实际情况,提出设计好的若干问题,用谈话的方式启发引导学生积极思考、探索,从而获得知识的一种教学方法。

谈话法的主要特点是师生之间不像讲授法那样,教师讲,学生听,信息单项交流,而是信息的双向交流。在谈话中,师生之间都可以获得反馈信息,根据这些反馈信息可以及时地调整和改善教与学的活动。这种教学过程,既可以使学生融会贯通地掌握知识,又能发展学生的智力,而且,在经常问答的过程中还锻炼了学生的表达芰Α?/P>

谈话法的基本要求:对学生而言,要积极思维,主动参与;勇于发现,积极应答。对教师的要求有下面几点。

(1)精心设计“问题系统”,对提问的对象及学生可能会怎样回答等要做到心中有数。教师在备课时应拟出提问的提纲、对谈话所需的时间、给学生能顺利地回答创造哪些条件等,都要做好准备。

(2)提出的问题,要难易适度。对某些有困难的学生,要善于由浅入深、由易到难的逐步引导。提出的问题要明确,应是学生所能理解的。

(3)要善于引导探讨、启发发现。对所提出的谈话内容,要具有启发性,教师要引导学生积极思考,层层深入,逐步地获得结论。

(4)要面向全体学生,因材施教。在谈话中要面向全体学生提出问题,并给他们一定的思考时间,使全体学生都处于积极思维的参与状态。要照顾优生和差生,鼓励学生大胆回答问题。

(5)及时小结。谈话中要对学生回答问题的情况及时小结,使学生明确是非,提高认识。

谈话法的优点:突出课堂教学中师生的双边活动,有利于信息反馈;课堂气氛活跃,有利于促进学生积极思维,有利于对学生能力的培养。

谈话法的缺点:教学组织比较困难,教学时间不易控制。

3.演示法

演示法是教师将教材内容用实物或教具演示出来,或做示范性实验来说明或印证所授知识的一种教学方法。在数学教学中,演示法主要用于概念(或部分命题)教学。

演示法大体可分为四种:①图片、图画、挂图的演示;②教具、实物模型的演示;③幻灯、录音、录像、教学电影的演示;④实验演示。运用演示法教学,对教师有如下具体的要求。

(1)演示要突出主题内容,尽量排除在演示过程中对学习内容产生干扰的无关因素。

(2)在演示时要与教师的讲解和谈话相结合,通过教师语言的启发,使学生不是停留在事物的外部表象上,而要使学生的认识上升到理性阶段,形成概念。

(3)教具的演示要适时、适当和适度。演示的目的在于帮助理解概念、掌握知识,但最终要逐步离开教具,上升为理性认识。因此,教学中演示教具要恰到好处,过多地依赖教具不利于学生数学思维的发展。

演示法的优点:可以使学生获得丰富的感性材料,加深对概念本质的理解,有利于培养学生的形象思维能力;能够激发学生的学习兴趣,调动学生的学习积极性和主动性。

演示法的缺点:实用范围受教学内容、教学设施所限。

4.讨论法

讨论法是学生根据教师所提出的问题,在集体中,相互交流个人的看法,相互启发、相互学习的一种教学方法。

讨论法的主要特点是:信息交流既不同于讲解法的单向交流,也不同于谈话法的双向交流,而是讨论集体成员之间的多向信息交流。学生的发言可以及时获得反馈信息,调节自己的观点,课堂气氛活跃。

讨论法的基本要求:


(1)讨论前师生都要做好充分准备。教师要向学生提出讨论的课题,指出注意事项,布置一些阅读的参考资料,每个学生都应按要求做好讨论发言准备。

(2)讨论题需简要明确,有具体的目标,问题深浅适当。

(3)讨论中要鼓励学生大胆发言,勇于表达自己的观点。

(4)每个问题讨论结束时,教师要作小结。

讨论法的教学程序:

(1)学生自学。教师指定自学内容,提出学习目标、并指出重、难点。

(2)自行讲解。教师把要讨论的内容,按概念、命题、例题、习题等分成若干单元,把学生分成小组或全班一起进行讨论,讨论时可选出主讲人,以主讲人讲述为主,其余成员补充为辅。

(3)相互讨论。在教师启发下,对主讲的结果正确与否?有无不同解法等进行讨论。

(4)单元结论。在相互讨论之后,教师归纳出正确结论,进行单元小结。

(5)全课总结。待所设计的每个单元都讨论结束后,教师对全课内容进行总结,布置相应的练习、作业。

讨论法的优点:讨论活动是以学生自己的活动为中心,每个学生都有发言的机会,这对于培养学生的语言表达能力是十分有益的;讨论前需要学生自学并准备发言提纲,这既培养了学生的自学能力,又调动了学生学习的主动性和积极性;讨论中的发言固然要围绕讨论的中心,但又可以不受教材的限制,因而有利于发挥学生的独立思考和创造精神。

讨论法的缺点:课堂组织教学不易控制;比较耗费教学时间。

讨论法可使每个学生展示自己的思想,这样的交流可以促使他们认知结构的完善。另外,也可以发挥每个人的个性特征,增强他们的自信心和创造力。这种方法在国外是普遍采用的方法,而在我国却用之甚少,很值得深入研究。

二、国外教改中的数学教学方法

1.发现法

发现法又称探索法、研究法、现代启发式或问题教学法。指教师在学生学习概念、命题时,只是给他一些事实(例)和问题,让学生积极思考,独立探究,自行发现并掌握相应的原理和结论的一种教学方法。它的指导思想是以学生为主体,独立实现认识过程,即在教师的启发下,使学生自觉地、主动地探索;科学认识解决问题的方法及步骤;研究对象的起因和内部联系,从中找出规律,形成概念或解决问题。

发现法就其思想渊源来说,有着悠久历史,但是引起人们对发现法的重新关注和研究,是由于20世纪60年代布鲁纳的大力倡导。布鲁纳认为,要培养具有发明创造才能的科技人才,不但要使学生掌握学科的基本概念、基本原理,而且要发展学生对待学习的探索性态度,从而大力提倡广泛使用发现法。

使用发现法教学的一般步骤:

(1)创设问题情境,激发学生的兴趣和学习的主动性。

(2)推测问题结论,探讨问题解法。在教师的启发下,学生积极思考,回忆有关知识和方法,进行分析、综合、猜测结论,探索解决问题的途径和方法。

(3)验证结论。采用反驳或论证去验证所得猜想。

(4)完善问题的解答,总结思路方法,并对获得的知识用于应用和巩固。

发现法的教学过程可概括为如下框图模式。

发现法教学的基本要求:

(1)教师要发挥主导作用,精心创设情境,引导学生有目的、有步骤地去发现问题。

(2)学生要发挥主体作用,积极主动地参与发现过程,充分运用观察、试验、联想、类比、分析、归纳等方法,积极提出猜想,进行论证。

(3)教师要突出强调发现问题的思维过程,使学生逐步掌握数学的思想方法。

发现法的优点:能使学生产生学习的内在动机,增强自信心;能使学生学会发现的试探方法,培养学生提出问题、解决问题的能力和创造发明的态度;利于学生自己将知识系统化和结构化,更好地理解和巩固知识。

发现法的缺点:花费学时太多;受学生思维发展水平限制,很多内容不适宜发现法;对教师的要求较高,如果教师没有较高水平,那么采用发现法进行教学是难以取得好效果的。

2.程序教学法

程序教学法来源于美国的鲁莱西设计的一种进行自动教学的机器,企图利用这种机器,把教师从教学的具体事务中解脱出来,节省时间和精力。这种设想,当时没有引起重视和推广。直至1945年,美国心理学家斯金纳重新提出,才引起广大心理学和教育界人士的重视。

程序教学法是指依靠教学机器和程序教材,呈现学习程序,包括问题的显示,学生的反映和将反映的正误情况,反馈给学生,使学习者进行个别学习的一种教学方法。程序教学主要有两类,即直线式的程序和分支式的程序。

直线式程序是斯金纳首创的。其教学过程是:把学习材料由浅入深地分为若干“小单元”,以直线式的编排,每一个小单元内容写在一张卡片上,依次呈现给学生。在呈现每一个单元时,要求学生进行对答反应,如果答对了,机器就呈现出正确答案,然后进入下一步,否则,继续思考回答。其模式为:①→②→③→…→(n)。


分支式程序是美国心理学家克洛德创立的。它是直线式程序的发展,采用多重选择反应,以适应个别差异的需要。其教学过程是:将教材内容依次分为若干单元呈现给学生,在学生阅读了一个单元的教材之后,立即对他进行测验(测验题有正、误的多项选择答案),如果选对了,就引进新的内容,进入下一单元的学习;如果选错了,便引向一个适宜的单元,再继续学习,或者回到先前的单元再学习一遍,然后又进行问题回答,直到回答正确后进入下一单元的学习。其模式如图5-1。

分支式程序的进一步发展,是利用计算机进行辅助教学(CAI),这部分内容将在§ 5.4中作介绍。

程序教学法的优点:由于要求学生自己动手、动脑去独立完成学习任务,因此有利于培养自学能力和养成自学习惯;有利于因材施教;可以排除师资条件对教学的影响,保证教学质量的提高。

程序教学法的缺点:教学过程呆板、单调,缺乏灵活性,容易束缚学生创造思维的发展,不利于能力的培养;不利于发挥教师的主导作用,缺乏师生之间的情感交流;教师难以了解学生的学习心理过程,不能对学习障碍及时排除。

3.范例教学法

范例教学法是在德国教育家瓦·根舍于20世纪50年代创立的“范例教学”理论基础上发展起来的教学方法,指用典型范例去达到对事物一般属性认识和理解的教学方法。范例教学法要求教师在备课时对教学内容进行以下五个方面的分析。

(1)基本原理分析。分析教材中哪些是带有普遍意义的内容,这些内容对今后教学起什么作用,选择哪些范例,通过探讨范例使学生掌握哪些原理、规律和方法。

(2)智力作用分析。分析课题内容对学生智力活动所起的作用。

(3)未来意义分析。分析课题内容对学生未来学习的意义。

(4)内容结构分析。分析组成整个内容的基本要素,这些要素之间的关系在教材中所处的地位;分析课题内容的整个结构。

(5)内容特点分析。分析这个课题有哪些特点,哪些内容能引起学生的兴趣,通过哪些直观手段引发学生提出问题,布置什么作业才能使学生有效地应用知识等。

范例教学法的教学步骤分为下面四个阶段。

(1)以典型范例说明事物的特征。

(2)通过对范例的认识,归纳出一类对象的普遍特征和本质属性。

(3)认识事物的发展规律,掌握方法。

(4)个体体会,即通过知识应用去进一步理解和掌握所学习的基本理论和方法。

范例教学法的优点:从个别到一般的认识过程,符合低年级学生的认知规律;能调动学生学习的主动性;有利于培养学生的概括能力。

范例教学法的缺点:思维方式单一,容易造成思维定势,不利于学生思维能力的全面发展;过份强调归纳,会削弱对学生演绎推理的训练。并不是所有内容都能通过“范例”去教学,因为要受具体的内容和教学时间限制。

其大意;细读是对教材逐字句地读,钻研教材的内容、概念、公式和法则;精读是要概括内容,在深入了解教材的基础上记忆。领读阶段约需一至两周的时间。

‘伍’ 数学教学方法是什么

1、讲授法

讲授法是教师运用口头语言向学生描绘情境、叙述事实、解释概念、论证原理和阐明规律的一种教学方法。

2、谈话法

谈话法又称回答法,它是通过师生的交谈来传播和学习知识的一种方法。其特点是教师引导学生运用已有的经验和知识回答教师提出的问题,借以获得新知识或巩固、检查已学的知识。

3、演示法

演示法是教师把实物或实物的模象展示给学生观察,或通过示范性的实验,通过现代教学手段,使学生获得知识更新的一种教学方法。它是辅助的教学方法,经常与讲授、谈话、讨论等方法配合一起使用。

4、练习法

练习法是在教师指导下学生巩固知识和培养各种学习技能的基本方法,也是学生学习过程中的一种主要的实践活动。

5、课堂讨论法

讨论法是在教师指导下,由全班或小组围绕某一种中心问题通过发表各自意见和看法,共同研讨,相互启发,集思广益地进行学习的一种方法。

6、动手操作法

动手操作法是学生在教师的指导下,使用一定的设备和材料,通过操作,引起实验对象的某些变化,并从观察这些变化中获得新知识或验证知识的一种教学方法,它也是自然科学学科常用的一种方法。

7、启发法

启发教学可以由一问一答、一讲一练的形式来体现;也可以通过教师的生动讲述使学生产生联想,留下深刻印象而实现。

所以说,启发性是一种对各种教学方法和教学活动都具有的指导意义的教学思想,启发式教学法就是贯彻启发性教学思想的教学法。

‘陆’ 数学教育学是一门什么性质的学科,它的基本结构包括哪些内容

数学教育学是一门年轻学科,但其历史源远流长,其中数学教育学的含义:
研究数学教育现象,揭示数学教育规律
“教什么、学什么”; “怎样教、怎样学”;“教得怎样,学得怎样”以及相关的理论

1、有利于提升数学教师的专业素养
高质量的数学教育需要高素质的数学师资队伍,需要数学教师专业化。高师院校数学专业肩负数学教师培养的任务,数学教育学是其中一门非常重要的专业必修课程。
2、有利于促进学生数学的学习发展
怎样让学生学好数学是数学教师的核心任务。通过学习数学教育学,教师可以根据数学教育学的相关理论自觉而有效地指导学生的数学学习。
3、有利于数学课程改革的有效实施
数学课程改革的关键是课程理念的贯彻和课程的有效实施。
通过数学教育学的学习可以提高数学教师对数学课程的目的意义、内容结构、实施方法、评价标准及其各环节之间的关系的逻辑判断能力和调和能力。

3.使学生了解数学教育学的研究对象、掌握数学教育学的研究内容及学习该学科的意义;
5. 了解数学教育学的研究对象、特点和研究方法,理解学习数学教育学的意义。数学教育学的结构及其相关学科

数学教育学研究的对象主要是数学学习论、数学课程论、数学教学论,这三论的关系如图0-1-2所示:

虽然三论是互相关联的,研究其中的一论必然会影响另外两论。但是,这三论中,学习论是基础,它提供给课程论与教学论必要的心理学根据,教学论是学习论与课程论的直接体现者。

数学教育学及其相关学科大致分为三部分:

1. 基础部分

其中包括哲学、数学、数学思想史、中学数学近代基础、数学方法论、教育学、心理学、逻辑学、思维科学、计算机科学、计算机辅助教学等。

数学,除了包括解析几何、高等代数、数学分析的旧三基外,还要包括拓扑学、抽象代数、泛函分析的新三基,除此之外,还应有概率统计、离散数学、模糊数学、几何基础、集合论以及一些传统的初等数学。总之,数学教育工作者所需要的数学, 应该是广而博, 并在一个分支上有较深入的了解。

数学思想史,着重研究一个数学概念或数学分支如何由孕育、成熟到发展,如何由粗糙到精确,其间的思想是如何发展,从而对研究数学教育得到必要的启示。

中学数学近代基础,是用高观点研究初等数学的一门课程。换句话说,是把初等数学置于现代的,统一的观点下来研究,从而对初等数学有更深刻的认识。

数学方法论,它是从方法论的角度研究和讨论数学发展规律,数学思想方法以及数学中的发现、发明与创造等。

教育学,包括教育论与教学论部分,属于一般的教育教学规律。

心理学,这里指普通心理学,它主要研究认识过程、情感过程和意志过程中的心理活动规律。

逻辑学,包括数理逻辑和形式逻辑两部分,并以形式逻辑为其重点。

计算机科学,包括计算机原理,几种常用的程序语言以及编程的方法与技巧。

计算机辅助教学,包括计算机辅助教学作用、教学原则以及课件的编制等。

以上是研究数学教育学的必要的基础,数学教育学主要是研究下面的核心部分。

2. 核心部分

其中包括数学课程论、数学学习论、数学教学论

3. 拓广部分

其中包括数学教育评价、数学教育史、数学教育心理学、比较数学教育学。

数学教育评价,包括一般的评价概念、数学课程的评价、数学教学的评价、数学学习的评价,评价不是目的而是手段,通过评价肯定成绩、发现问题, 提出进一步改进的意见; 通过评价选择适合学习的教学方法和学习方法。

数学教育史,包括中、外数学教育发展的历史,特别是对一些代表人物的数学教育思想的研究,从而对当今的数学教育有所启示,做到洋为中用,古为今用。

数学教育心理学,它是以数学教育过程中的师生交互行为为对象,研究教育情境中的各种心理现象及其变化,分析被教育者身心发展对教育条件的依存关系,探讨学生在教育条件下,知识、技能、能力、态度、个性品质的形成和发展的规律、特点。

比较数学教育学, 它是研究当今世界不同国家、 民族和地区的数学教育;在研究其各自的经济、政治、哲学和民族传统的基础上,研究教育的某些共同点,发展规律以及其总的趋势,进行科学预测。其目的在于吸取外国的有益经验,供发展我国的数学教育参考。

由此可见,数学教育是一门涉及相当广泛领域的学科,所以也可以把数学教育学看作一个科学体系,就像数学下属有许多分支一样。本课程对上述内容的核心部分作简要介绍,其它内容请参阅有关论着。

望采纳

‘柒’ 数学教学方法是什么

数学教学方法:

1、讲授法是一种教学方法,教师使用口语来描述情境,叙述事实,解释概念,论证原则和澄清规则。

2、谈话法又称回答法,是通过教师和学生之间的对话传播和学习知识的方法。其特点是教师指导学生利用现有的经验和知识回答教师提出的问题,获取新知识或巩固和检查所获得的知识。

3、讨论方法是一种方法,使整个班级或小组围绕某个中心问题发表自己的意见和看法,共同探索,互相激励,进行头脑风暴和学习。

4、演示方法是一种教学方法,教师通过现代教学方法向学生展示物理或物理图像进行观察,或通过示范实验,使学生获得知识更新。它是一种辅助教学方法,通常与讲座,对话,讨论等结合使用。

5、练习法是学生在教师指导下巩固知识,培养各种学习技能的基本方法。这也是学生学习过程中的一项重要实践活动。

6、实验法是一种教学方法,学生在教师的指导下使用某些设备和材料,通过操作引起实验对象的某些变化,并通过观察这些变化获得新知识或验证知识。一种常用于自然科学学科的方法。

7、实习是一种教学方法,学生可以使用某些实习场所,参加某些实习,掌握一定的技能和相关的直接知识,或者验证间接知识并全面应用所学知识。

研究方法:

数学教学法目前较多是研究中小学数学教学法,高等学校数学教学法的研究还处于开创阶段。数学教学法既是一门理论学科,又是一门实践性很强的学科。它的研究方法一般有两种:

①总结行之有效的先进的数学教学经验,上升到理论高度,而后用于指导数学教学实践。

②针对目前仍存在的问题,开展调查研究。

1)总结行之有效的先进的数学教学经验,上升到理论高度,而后用于指导数学教学实践。

2)针对目设计解决问题的最佳具体方案,进行典型试验,再总结经验逐步推广,最后上升到理论。

‘捌’ 小学数学教学论具有什么相结合的性质

小学数学教学论具有的相结合的性质介绍:

在小学数学教学中,根据小学生的认知特点和已有生活经验将数学知识与学生的生活实际紧密结合,数学有利于培养学生对数学的应用意识、培养学生学习数学的兴趣,对于更好地认识数学、学好数学、培养能力、发展智力、促进学生综合素质的发展具有重要的意义。

需知:

许多诸如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。

此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。

‘玖’ 初中数学教学方法有哪些,各有什么特点

“瓜傻式”教学法----将数学那种严密的逻辑演绎过程还原为生动活泼的知识生成过程。通过让学生了解所学的数学知识的现实背景,感知知识的的产生过程。掌握解决问题的思路,知道思路的形成过程,这种方法,可以极大激发孩子们的求知欲和创作欲。使枯燥干涩的数学概念演绎变得生动起来。

方法/步骤
自主探索式学习----重点在于学生亲自体验学习过程 , 其价值与其说是学生发现 结论 , 不如说更看重学生的探索过程。自主探索式学习重视让每个学生根据自己的体 验 , 通过观察、实验、猜想、验证、推理等方式自由地、开放地去探究、去发现、去 “ 再创造 ” 有关数学问题口在这个过程中 , 学生不仅获得了必要的数学知识和技能 , 还对数学 知识的形成过程有所了解 , 特别是体验和学习数学的思考方法和数学的价值。合作学习----小学数学教学中经常被采用的形式。但目前小组合作学习效益高的较少 , 有的只是流于形式。有的研究者认为 , 小组学习有独立型、竞争型、依赖型、依存 型等几种类型。目前我们用得较多的是学生独立学习后相互交流 , 真正意义上的合作一一相互依存地来研究或者共同解决一个问题还太少。“实践活动”的教学方法----通过实践活动,培养学生的创新精神和实践能力,发掘学生潜能,让学生学有用的数学知识。……无论是“优选”还是“创新”,一般都应注意以下四点:一是教学方法的选用或创新必须符合教学规律和原则;二是必须依据教学内容和特点,确保教学任务的完成;三是必须符合学生的年龄、心理变化特征和教师本身的教学风格;四是必须符合现有的教学条件和所规定的教学时间。另外,在指导思想上,教师应注意用辩证的观点来审视各种教学方法。正所谓“教无定法”。
常用的教学方法
进入20世纪80年代以来,伴随着整个教学领域的深入改革,小学数学教学方法也呈现出蓬勃发展的势头。广大的小学数学教师和教学研究人员,一方面对我国传统的小学数学教学方法进行大胆的完善与改造,一方面积极地引进国外先进的教学方法,使我国新的教学方法,如雨后春笋,竞相涌现。一、小学数学新教学方法介绍(一)发现法发现法是由美国当代着名教育家、认知心理学家布鲁纳50年代至60年代初所倡导的一种教学方法。1、发现法的基本含义及特点发现法是指教师不直接把现成的知识传授给学生,而是引导学生根据教师和教科书提供的课题与材料,积极主动地思考,独立地发现相应的问题和法则的一种教学方法。发现法与其他教学方法相比较,有以下几个特点:(1)发现法强调学生是发现者,让学生自己去独立发现、去认识,自己求出问题的答案,而不是教师把现成的结论提供给学生,使学生成为被动的吸收者。(2)发现法强调学生内在学习动机的作用。学生最好的学习动机莫过于他们对所学课程具有内在的兴趣。发现法符合儿童好玩、好动、好问和喜欢追根求源的心理特点,遇到新奇、复杂的问题,他们就会积极地去探索。教师在教学中充分利用这一特点,利用新奇、疑难和矛盾等引发学生的思维冲突,促使他们产生强烈的求知欲望,主动地去探究和解决问题,改变了以往传统教学法仅利用外来刺激促发学生学习的做法。(3)发现法使教师的主导作用表现为潜在的、间接的。由于该法是让学生运用已有的知识和教师提供的各种学习材料、直观教具等,自己去观察,用头脑去分析、综合、判断、推理,亲自去发现事物的本质规律,所以在这个过程中教师的主导作用是潜在的、间接的。2、发现法的主要优点及其局限性发现法有如下几个主要优点。(1)可以使学生学习的外部动机转化为内部动机,增强学习的信心。(2)有助于培养学生解决问题的能力。由于发现法经常练习怎样解决问题,所以能使学生学会探究的方法,培养学生提出问题和解决问题的能力,以及乐于创造发明的态度。(3)运用发现法,有助于提高学生的智慧,发挥学生的潜力,培养学生优良的思维品质。(4)有利于学生对知识的记忆和巩固。在发现学习的过程中,学生可就已有的知识结构进行内部改组,这种改组,可以使已有的知识结构与要学习的新知识更好的联系起来,这种系统化和结构化的知识,就更加有助于学生的理解、巩固和应用。发现法也有一定的局限性。(1)就教学效率而言,使用发现法需要花费的时间比较多。因为学生获得知识的过程是再发现的过程,一切真理都要学生自己去获得,或者重新发现,而不是由教师简单地告诉学生,因此,教学过程必然经历一个较长时间的摸索过程。(2)就教学内容而言,它的适应是有一定范围的。发现法比较适用于具有严格逻辑的数、理、化等学科,对于人文学科是不太适用的。就适用的学科而言,也是只适用于概念和前后有联系的概括性知识的教学,如求平均数、运算定律等。而概念的名称、符号、表示法等,仍需要由教师来讲解。(3)就教学的对象而言,它更适用于中、高年级的学生。因为发现学习必须以一定的基础知识和经验为发现的前提条件,因此,年级越高的学生,独立探索的能力也就会越强。所以,并非所有的教学内容和教学对象都有必要和可能采用发现法教学。3、发现法教学举例(一位数除两位数的教学)给出一道题如39÷3。学生可先拿39个物品,每3个一份,把它们分成13份。做几个这样的题目后,可以让他们把物品10个组成一组。例如,给出这样一道题:“哈利买了4条糖果,每条有10块。他吃了1块,把剩下的每3块包成一包,分给同学们,分给了几个同学?”学生可能有以下几种解法:(1)每3个分成一堆,然后数出分得的堆数。(2)从3个10中各先拿出1个,剩下的每9个分给3个同学,再把其余的也每3个分成一堆。9+9+9+3+3+3+3=39(块)↓↓↓↓↓↓↓3+3+3+1+1+1+1=13(人)(3)与(2)相似,但他们看出有4个9。9+9+9+9+3=39(块)↓↓↓↓↓3+3+3+3+1=13(人)(4)他们看出3个10正好分给10个人,剩下的每3个分成一组。30+3+3+3=39(块)↓ ↓↓↓10+1+1+1=13(人)(5)与(4)相似,但他们看出剩下的9正好分给3个人。30+9=39(块)↓ ↓10+3=13(人)在学生得出解法之后,全班进行讨论。教师对不同的算法不给出评价。再出一道题,许多学生会选用比他第一次用的更为简便的方法。教师进一步提出引导性问题,促使学生找出更为有效的计算方法,形成一般的竖式计算。(二)尝试教学法尝试教学法是小学数学教学方法中一种影响比较大的教学方法。它是一种具有中国特色的教学方法。尝试教学法是由常州市教育科学研究所的邱学华老师最早设计和提出的,经过在一些地区和全国逐步推广,到现在已有十多年的时间,取得了很好的教学效果,甚至在国际上也有一定的影响。1、尝试教学法的基本内容什么是尝试教学法?尝试教学法的基本思路就是:教学过程中,不是先由教师讲,而是让学生在上知识的基础上先来尝试练习,在尝试的过程中指导学生自学课本,引导学生讨论,在学生尝试练习的基础上,教师再进行有针对性的讲解。尝试教学法的基本程序分为五个步骤:出示尝试题;自学课本;尝试练习;学生讨论;教师讲解。尝试教学法与普通的教学方法的根本区别就在于,改变教学过程中“先讲后练”的方式,以“先练后讲”的方式作为教学的主要形式。尝试教学法产生的背景是:在20世纪80年代初,我国教学改革已经走上了正轨,国内有许多教学改革的实验研究。同时,也有许多国外的教学改革的经验大量地介绍进来。在这种情况下,人们开始思考如何根据我国的教学改革的实验,研究和创造具有中国特色的,既符合现代教育改革的需要,又具有较强的操作性的教学方法。邱学华老师多年来进行小学数学教学的研究,在“文革”前后进行了多项小学数学教学改革方面的调查与实验,深感研究一种新的小学数学教学法的必要性。因此,他在分析和对比国内外教学改革的经验的基础上,提出了尝试教学法的设想。他借鉴了中国古代的“启发式教学”原理、发现法和自学辅导法教学的思路,综合地分析和研究这些教学法的长处与不足,试图形成一种独特的,具有操作性和可行性的教学方法。

‘拾’ 小学数学教学的特点

1、目标预设化

新课程呼唤生成性课堂,决不意味着预设已不再重要,而是对预设提出了更高的要求,要求教师应当为“生成”去寻求灵活合理的“预设”让“预设”去促进有效的“生成”,才能在教学中使学生点燃思考的火花,拓展思维的空间,彰显生命的力量。

2、内容生活化

《小学数学课程标准》中指出,义务教育阶段的数学课程,“强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行理解与应用的过程。”使数学教学贴近生活。

3、探究合作性

《小学数学课程标准》指出:“合作交流是学生学习数学的重要方式,在作交流、与人分享和独立思考的氛围中,倾听、质疑、说服、推广而直至感到豁然开朗,这是数学学习的一个新境界。”

4、思维个性化

每个学生都有自己的学习风格,外向型的学生开朗、活泼,喜欢请问老师,愿意和同学交谈,发表意见坦率,适合集体学习,便于解决疑难问题。内向型的学生情绪稳定,喜欢独立思考,注意力较集中,一般不喜欢集体学习。

(10)数学教学方法具有什么性质扩展阅读:

小学教育专业坚持以培养德、智、体、美全面发展,有较高思想素养、宽厚基础知识、一定的教育科研能力和管理水平、良好综合素质,能适应小学教育改革、发展需要的具有现代教育观念和创新精神的小学教师为培养目标。其综合素质概括为一个核心、两种水平、六种能力、十二项基本功。

以师德为核心开展教育,努力使学生达到本科层次学术水平和小学教师的专业化水平,具备教育能力、教学能力、组织管理能力、活动指导能力、教学研究能力、学习发展能力,和讲、写、算、创、教、用、作、弹、唱、跳、画、练十二项基本功

阅读全文

与数学教学方法具有什么性质相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:743
乙酸乙酯化学式怎么算 浏览:1408
沈阳初中的数学是什么版本的 浏览:1358
华为手机家人共享如何查看地理位置 浏览:1049
一氧化碳还原氧化铝化学方程式怎么配平 浏览:890
数学c什么意思是什么意思是什么 浏览:1416
中考初中地理如何补 浏览:1307
360浏览器历史在哪里下载迅雷下载 浏览:706
数学奥数卡怎么办 浏览:1396
如何回答地理是什么 浏览:1030
win7如何删除电脑文件浏览历史 浏览:1060
大学物理实验干什么用的到 浏览:1490
二年级上册数学框框怎么填 浏览:1708
西安瑞禧生物科技有限公司怎么样 浏览:990
武大的分析化学怎么样 浏览:1252
ige电化学发光偏高怎么办 浏览:1341
学而思初中英语和语文怎么样 浏览:1660
下列哪个水飞蓟素化学结构 浏览:1427
化学理学哪些专业好 浏览:1490
数学中的棱的意思是什么 浏览:1066