① 古代人把数学称为什么东西
古代人把数学称为算术。
算术是数学中最古老、最基础和最初等的部分,它研究数的性质及其运算。把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理,就形成了最古老的一门数学——算术。在古代全部数学就叫做算术,现代的代数学、数论等最初就是由算术发展起来的。后来,算学、数学的概念出现了,它代替了算术的含义,包括了全部数学,算术就变成了其中的一个分支。
② 什么是数学逻辑能力
数学思维能力即是数学思维,数学思维是多种思维能力的综合运用,其特点是全面开发左右脑潜能,提升孩子的学习能力、解决问题能力和创造力,当孩子掌握了形状、方位、比较、排序、图形和拼摆这些能力的时候,说明孩子已近找我了一定的数学逻辑思维能力了。
数学思维拓展训练特点:
1、 全面开发孩子的左右脑潜能,提升孩子的学习能力、解决问题能力和创造力;帮助幼儿学会思考、主动探讨、自主学习,
2、 通过思维训练的数学活动和策略游戏, 对思维的广度、深度和创造性方面进行综合训练。
3、 根据儿童身心发展的特点,提高幼儿的数学推理、空间推理和逻辑推理,促进幼儿多元智能的发展,为塑造幼儿的未来打下良好的基础。
4、利用神奇快速的心算训练和思维启蒙训练,提高与智商最为相关的五大领域的基础能力。
5、为解决幼小衔接的难题而准备。
(2)数学具有什么和什么双重属性扩展阅读:
数学就是一种对模式的研究,或者一种模式化(抽象化)的过程。数学将具体的问题普遍化、抽象化为一个纯粹的数学问题,而对这个抽象的问题的解决又具有实际的意义,有助于解决实际的问题。因此,数学具有两重属性,即抽象性和现实性(或应用性)。
儿童学习数学,须从他们生活中熟悉的具体事物入手,逐步开始数学的抽象过程。仅仅停留于具体问题的解决不能称为数学,而不从具体的事物出发或者脱离具体实践来教授抽象的数学运算,更是违背了数学的本质属性。
幼儿处在逻辑思维萌发及初步发展的时期,也是数学概念初步形成的时期。数学知识具有高度的逻辑性和抽象性,学习数学可以锻炼幼儿思维的逻辑性和抽象性。
只会数学能力不仅仅至掌握这些能力,而是要通过这些思维能力去学习,来解答数学问题,并且通过这些思维能力去解决生活上遇到的问题,来培养孩子的逻辑思维能力。上面介绍的是什么是数学逻辑思维。
数学逻辑思维就是运用专业的思维培训教材及方法,来培养孩子的数学逻辑思维能力,并且在这个训练过程中,运用一定的方法去纠正孩子的思维方式,一切目的都是为了让孩子有全面、创新、扩散型的和逆向的思维能力。
我国初、高中数学教学课程标准中都明确指出,思维能力主要是指:会观察、实验、比较、猜想、分析、综合、抽象和概括;会用归纳、演绎和类比进行推理;会合乎逻辑地、准确地阐述自己的思想和观点;能运用数学概念、思想和方法,辨明数学关系,形成良好的思维品质。
③ 概念教学的方法
概念教学的基本方法:
一、注重概念的来源和形成
数学概念不是简单的由数字推导出的结论,其本质是人类对现实世界空间形式和数量关系的概括反映,是从现实生活中抽象出来的真理。概念的形成过程是通过对系列感性材料进行认识、分析、抽象和概括后得出的。认识任何事物都必须先弄清其来龙去脉,数学概念也同样如此,有了这一前提,既消除了学生对于数学概念抽象、死板的印象,又活跃了课堂氛围,调动了学生学习的积极性。在传统的数学概念教学中,一般采取“概念加例题”的方式,不利于学生对概念的理解。注重概念的来源和形成过程,能够从本质上完整地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。
二、注重概念的变式练习
真正掌握概念必须学会各种变式练习,变式练习既是知识转化为技能的关键途径,也是巩固学习成果的重要方法。变式训练,就是在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使其条件或形式发生变化,而本质特征不变。
三、注重结合生活实例
概念的形成依赖于感性认识,却以理性认识的抽象符号和语言表现出来。根据心理学研究,学生更容易接受具体的感性认识。比如,你描述了若干“圆”的特征,都不如直接拿一个实物来讲解一下容易理解。在数学教学过程中,各种形式的直观教学,是提供丰富、正确的感性认识的主要途径,所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,更容易揭示概念的本质特征。
四、掌握概念是学好数学的基础,在教学中教师应注重引导学生形成良好的概念认知结构,培养学生从概念的联系中寻找解决问题的思路和方法的能力。本文介绍的数学概念教学的方法仅供参考,总的来讲,初中数学概念的教学没有固定的模式,只要我们根据学生的具体情况,从学生的心理出发,用各种生动活泼的教学方式调动起他们的学习积极性,让他们充分参与进来,全方位开发创新思维,就一定会收到事半功倍的成效。
初中数学概念教学的基本方法
2数学概念的主要特征
1)数学概念的组成 数学概念通常由概念的名称、定义、例子、属性和符号组成。如等边三角形这个概念,概念的名称是“等边三角形”(符号是“等边△”),数学概念具有抽象与具体的双重性。 数学概念代表的是一类对象而不是个别事物,它在一定范围内具有普遍意义。如“等边三角形”这个概念代表的是各种颜色、大小抽象的等边三角形,而任何具体颜色、大小的等边三角形都只是它的正面例子。数学概念是数学命题、数学推理的基础成分,就整个一个数学系统而言,概念是个实实在在的东西,这是数学概念具体性的一面。
2)数学概念的概括性强,如“等边三角形”就是对千千万万个具体的等边三角形的高度概括的认识。
3)数学概念的名称往往用特定的数学符号表示,如“等腰△”、“y=sinx”这些符号表示,使数学概念具有形式和简明的特点。
4)数学概念具有系统性。每一数学分支的概念由原名出发,经过不断抽象定义,逐步形成一个严密的概念系统。就某一具体知识而言,相关的概念也组成一个系统。例如,与三角形这一知识相关的概念,边、角、高、中线………组成一个关于三角形概念的系统。
3数学概念教学方法
一、注重利用生活实例引入概念
概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。所以在讲述新概念时,从引导学生观察和分析有关具体实物人手,比较容易揭示概念的本质和特征。
二、注重剖析,揭示概念的本质
数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延。也就是从质和量两个方面来明确概念所反映的对象。
三、注重概念的形成过程
许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。
四、注重通过比较巩固对概念的理解
巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。
4数学概念有效方式
一、重视学生原有认知结构,拓展联想空间
新概念学习的前提是学生具有良好的认知结构和丰厚的知识积累,必须唤起学生原有认知结构中的有关知识和生活经验。有些教师认为学生已具备了相关知识的储备,没有必要进行复习,结果出现学生对新概念茫然混沌、理解碎裂的状况。在案例教学中,三角函数也是反映两个变量之间的关系,为突出函数的本质,我在教学中引导学生复习已学过的函数,再顺势揭题。
三、经历数学概念思维过程,体验成长快乐 。数学概念的教学就应该成为思维的体操,积极展示思维的发生、发展,从具体到抽象,让概念在条理中、在生动活泼的思维历练中自然生成。课例中,通过问题的设计和不断的探究,让学生体会到在直角三角形中:锐角固定,则这个角的对边与邻边的比值固定。自然得出:锐角变化,则这个角的对边与邻边的比值随之变化。正切概念来之自然、呼之欲出。
二、再现数学概念现实背景,激发学习兴趣
数学来源于生活,服务于生活。庞加莱曾讲过这样一个故事:教室里,先生对学生说“圆周是一定点到同一平面上等距离点的轨迹”,可学生听后面面相觑,谁也不明白圆周是什么,于是先生拿起粉笔在黑板上画了一个圆圈,学生们立即欢呼起来“啊,圆周就是圆圈啊,明白了”,这一故事告诉我们进行概念教学时,教师应从实际出发,创设情境,提出问题,让学生在满腹狐疑中觉得有必要学习这个概念。
四、理解数学概念内涵外延,构建问题模式 。多角度、多变式、循序渐进的安排概念问题的训练是概念固化的关键,这个环节的成功与否直接影响学生的解题能力的提高。案例中,既回归生活(坡面),又对概念的内涵和外延进行了例题设计,强化了对正切概念的本质认识,为下课时正弦、余弦概念的学习打好了基础。
④ 如何理解数学的两重性
如何理解数学的两重性
对数学的两重性,我们应该有一个深入的了解.
一、数学是演绎的,也是归纳的
一般说来,人们认识客观世界的方式有两种,一是由认识个别的、特殊的事物,进而认识一般的事物,这种认识方法称为归纳法.一是由认识一般的事物,过渡到认识特殊、个别的事物,这种认识方
法称为演绎法.认识的深化,是在归纳和演绎的交替过程中实现的.归纳把对许多事物的特殊属性的认识发展归结为对于一类事物的共同属性的认识.演绎把从归纳得出的一般结论作为依据,去研究其他个
别事物的特性.因此,归纳是演绎的基础,而演绎是归纳的深化.
《几何原本》是数学发展史上的第一座理论丰碑.欧几里得(Euclid)将原有的数学知识进行梳理提炼,把理论的起点建立在人们的直觉上,找出少数最直观的原始概念和公设、公理,借助人类思维
的先进逻辑推理模式,逐条推演出以后的命题,采用演绎法的体系建构了平面几何理论,从而确立了公理化思想,确立了演绎推理的范式.人们对数学演绎体系的推崇,表达了对科学理论方法的绝对信服
.数学从此步入发展的坦途.
公理体系使得数学具有鲜明的学科特点,清晰的逻辑起点,明确的概念,正确的判断.是演绎推理使得数学内容条理清晰,基础敦实,结论正确,因而显示出巨大的力量.演绎可以引导归纳,当演绎
推理出现阻碍时,就是向归纳提出问题,促使归纳超越模糊、零散和残缺.
然而,由逻辑演绎构筑起的理论体系制约着思维的自由,因为体系里面多是同语反复,只能环流,不能前进.这就是欧式几何理论成为长期制约非欧几何产生的藩篱的重要原因.由此看出,逻辑演绎
的主要功能不是发现新的结论,而是架构基本概念、基本运算和基本命题之间的必然联系.逻辑演绎擅长的是检验这些联系之间的途径是否有效,却难以确定通往正确方向的途径,因为确定通往正确方向
的途径是需要做出选择的,而这恰恰是归纳法之所长.
⑤ 将1-9填入三角形每边上四个数相加等于17,有几组解它们有什么共同特征,为什么
按”运河朝阳“的方法来填的话有两种填法,反正顶点是1、2、3
方法一:1、2之间填6、8,2、3之间填5、7
方法二:1、2之间填9、5,2、3之间填4、8
1、数学就是一种对模式的研究,或者一种模式化(抽象化)的过程。数学将具体的问题普遍化、抽象化为一个纯粹的数学问题,而对这个抽象的问题的解决又具有实际的意义,有助于解决实际的问题。因此,数学具有两重属性,即抽象性和现实性(或应用性)。
2、儿童学习数学,须从他们生活中熟悉的具体事物入手,逐步开始数学的抽象过程。仅仅停留于具体问题的解决不能称为数学,而不从具体的事物出发或者脱离具体实践来教授抽象的数学运算,更是违背了数学的本质属性。
3、幼儿处在逻辑思维萌发及初步发展的时期,也是数学概念初步形成的时期。数学知识具有高度的逻辑性和抽象性,学习数学可以锻炼幼儿思维的逻辑性和抽象性。
⑥ 数学2和数学1的区别是什么
数学2和数学1的区别是难度不一样,很多数学一要求掌握的东西数学二不要求。不同的专业要求考的数学不一样。比如计算机之类的要考数学一,而会计之类的就考数学二。
数学一包括高数线性代数,概率论与数理统计数学二包括高数和线性代数。数学三包括微积分,线性代数,概率论与数理统计。数学四包括微积分线性代数和概率论。数一数二是理工类的,数三数四是经济类的。
数学2和数学1的区别
数学是比较特殊的一门,它兼具专业课和公共课的双重性质,是工学、经济学、管理学等学科专业硕士研究生入学考试的必考科目,考查内容涉及高等数学、概率统计以及线性代数三个部分,分为四个类型,即数学一、数学二、数学三以及数学四,分别对应对数学要求不同的专业。
四个不同类型的考试范围、难度和侧重点不同,例如数学二不考概率统计,数学一以外高等数学考察内容较少,数学三和数学四对概率统计要求较高。
⑦ 数学素养与数学知识的区别联系实际
数学是科学的工具,在人类物质文明的进程中已充分显示出其实用价值。数学更是一种文化,是人类智慧的结晶,其价值已渗透到人类社会的每一个角落。数学本质的双重性决定了作为教育任务的数学价值取向应是多极的。数学教育不仅是知识的传授、能力的培养,而且是一种文化熏陶、素质的培养。数学素质教育应该是人文教育和科学教育的相互渗透,即整合。树立新型的教育观,是深化教育改革的关键。
一、数学教学中数学能力的培养途径
基于数学思维能力体现数学认识和建构的需要 ,也反映数学自身特征的要求,是数学能力的核心;另外,素质教育的核心是创新教育,我们所谈及的数学能力具备多方面的内容,但在其核心内容中必须定位在促进学生的创新能力方面。
(一)应用数学能力的培养
数学是一种语言,是认识世界必不可少的方法,运用数学的能力是未来公民应当具有的最基本的素质之一。九年义务教育数学教学大纲明确规定:“要使学生受到把实际问题抽象成数学问题的训练”,“形成用数学的意识” 。
1.重现知识形成的过程,培养学生用数学的意识。数学概念和数学规律大多是由实际问题抽象出来的,因而在进行数学概念和数学规律的教学中,我们不应当只是单纯地向学生讲授这些数学知识,而忽视对其原型的分析和抽象。我们应当从实际事例或学生已有知识出发,逐步引导学生对原型加以抽象、概括,弄清知识的抽象过程,了解它们的用途和适用范围,从而使学生形成对学数学、用数学所必须遵循的途径的认识。这不仅能加深学生对知识的理解和记忆,而且对激发学生学数学的兴趣、增强学生用数学的意识大有裨益。
2.创造条件,让学生运用数学解决实际问题。数学思想是对数学知识与方法形成的规律性的理性认识,是解决数学问题的根本策略。数学方法是解决问题的手段和工具。数学思想方法是数学的精髓,只有掌握了数学思想方法,才算真正掌握了数学。
因而,数学思想方法也应是学生必须具备的基本素质之一。现行教材中蕴涵了多种数学基础知识和方法,在教学时,我们应充分挖掘由数学基础知识所反映出来的数学思想和方法,设计数学思想方法的教学目标,结合教学内容适时渗透、反复强化、及时总结,用数学思想方式武装学生,使学生真正成为数学的主人。
(二)思维能力的培养
思维品质的优良与否是国民素质的重要决定因素。为了促进学生思维能力的发展,我们必须高度关注学生在数学学习过程中的思维活动,必须研究思维活动的发展规律,研究思维的有关类型和功能、结构、内在联系及其在数学教学中所起的作用。
1.重视数学思想培养的教学观中学数学思想内容包括:
①符合思想。数学语言准确而清楚,使用它使数学的运转成为可能。
②映射思想。以映射的原则,可以得到换元法,初等变换法及母函数法等解决问题的方法。
③化归思想。化归的实质就是把新问题转化为已经解决的问题来解决,把复杂问题转化为易于解决的简单问题来解决。它是处理数学问题的一种基本思想。换元法、配方法、分组法、反证法等都是化归思想的具体应用。
④分解思想。其特点是化整为零,其实质是分解――组合、分割――拼合的辩证思想。
⑤参数思想。参数作为桥梁,以沟通问题的条件与结论。在解题时引入新的变量,或将题设中多元里的一元看做已知数,根据已知条件列式推算,从而使问题获得解决。换元法、比值法、主元法、待定系数法等都是参数思想的具体应用。
⑥归纳思想。从几个简单的、个别的、特殊的事例出发,归纳出一般的规律和性质。即以特殊到一般的思维方式。
⑦类比思想。是由已知的两类事物具有某些相似性质,从而推断它们在其他性质上也可能相似的推理形式。
⑧演绎思想。由一般到特殊的逻辑推理方法。
⑨模型思想。实际问题可数学化,通过数学模型加以解决。数学思想在数学整个体系中起着“灵魂”的作用,只有重现数学思想的教学才能从高一层次提高学生的能力水平,培养学生的数学观念和良好品质,进而提高学生的数学素质。
2.重视“问题解决”的教学观问题解决作为一种教学模式或作为一种教学过程,是培养学生数学素质的一条有效途径。华师大张奠宙教授指出“问题解决反对单纯模仿,更多地从问题情景出发,构造数学模型,提供数学想象,伴以实际操作,鼓励发散思想,诱发创造能力,把数学嵌入活的认知过程中,而不是死的知识积累。我认为‘问题解决’是可以影响当前数学教育的突破口,它和‘升学率’不矛盾,有助于大众数学的推广,能全面提高数学素质”。重视“问题解决”,在一定的意义上也就是重视数学的应用价值。现在“能够运用所学知识解决简单的实际问题”被列为数学教学目的之一,就是要求我们顺应社会发展,加强数学应用的教学。
在教学中,我们尤其要注重培养学生良好的思维品质,使学生的思维既有明确的目的方向,又有自己的见解;既有广阔的思路,又能揭露问题的实质;既敢于创新,又能具体问题具体分析。
二、重视学生能力的个别差异,注意面向全体学生
针对学生的“个别差异”,我们要了解不同发展水平的学生理解运用知识的情况,及时注入不同的信息以调控学生的学习心理和认识的发展水平。根据学生的心理差别,我们要做到面向全体学生,建立良好的师生关系。帮助后进生克服心理障碍,关心他们,使他们有信心学好,提高克服困难的勇气。同时注意及时捕捉后进生的问题,发现他们的闪光点,有计划地设计一些后进生能回答的问题,保护他们的自尊心,激发他们的求知欲和学习热情,以达到大面积丰收。
总之,在数学教学中加强素质教育,就是要全面提高教育教学质量,全面提高学生整体素质。这样就能把素质教育推向一个新的高度,我们的素质教育定能取得喜人的成果。
⑧ 数学的特性
1.高度抽象性 .
数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来 并借助于抽象发展的。数学的抽象撇开了对象的具体内容,而仅仅保留数量关系和空间形式。在数学家看来,五个石头、五座大山、五朵金花与五条毒蛇之间,并没有什么区别。数学家关心的只是“五”。又如几何中的“点”、“线”、“面”的概念,代数中的“集合”、“方程”、“函数”等概念都是抽象思维的产物。“点”被看作没有大小的东西,禾长无宽无高;“线”被看作无限延长而无宽无高,“面”则被认为是可无限伸展的无高的面。实际上,理论上的“点”、“线”、“面”在现实中是不存在的,只有充分发挥自己的空间想象力才能真正理解。
2.严密逻辑性 .
数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。任何一门科学,都要应用逻辑工具,都有它严谨的一面。但数学对逻辑的要求不同于其它科学 因为数学的研究对象是具有高度抽象性的数量关系和空间形式,是一种形式化的思想材料。许多数学结果,很难找到具有直观意义的现实原型,往往是在理想情况下进行研究的。如一元二次方程求根公式的得出,两条直线位置关系的确定,无穷小量的得出,等等。数学运算、数学推理、数学证明、数学理论的正确性等,不能像自然科学那样借助于可重复的实验来检验,而只能借助于严密的逻辑方法来实现。
3.广泛应用性 .
数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。各门科学的“数学化”,是现代科学发展的一大趋势。我国已故着名数学家华罗庚教授曾指出:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学”。 这是对数学应用的广泛性的精辟概括。数学应用的例证不胜枚举,太阳系九大行星之一的海王星的发现,电磁波的发现,都是 历史上数学应用的光辉范例。
⑨ 数学思维是什么如何培养
数学思维也就是人们通常所指的数学思维能力,即能够用数学的观点去思考问题和解决问题的能力。比如转化与化归,从一般到特殊、特殊到一般,函数/映射的思想等等。
1、 全面开发孩子的左右脑潜能,提升孩子的学习能力、解决问题能力和创造力;帮助幼儿学会思考、主动探讨、自主学习,
2、 通过思维训练的数学活动和策略游戏, 对思维的广度、深度和创造性方面进行综合训练。
3、 根据儿童身心发展的特点,提高幼儿的数学推理、空间推理和逻辑推理,促进幼儿多元智能的发展,为塑造幼儿的未来打下良好的基础。
4、利用神奇快速的心算训练和思维启蒙训练,提高与智商最为相关的五大领域的基础能力。
数学将具体的问题普遍化、抽象化为一个纯粹的数学问题,而对这个抽象的问题的解决又具有实际的意义,有助于解决实际的问题。因此,数学具有两重属性,即抽象性和现实性。儿童学习数学,须从他们生活中熟悉的具体事物入手,逐步开始数学的抽象过程。
仅仅停留于具体问题的解决不能称为数学,而不从具体的事物出发或者脱离具体实践来教授抽象的数学运算,更是违背了数学的本质属性。
幼儿处在逻辑思维萌发及初步发展的时期,也是数学概念初步形成的时期。数学知识具有高度的逻辑性和抽象性,学习数学可以锻炼幼儿思维的逻辑性和抽象性。
⑩ 数学三大特性
1.高度抽象性 :数学的抽象,在对象上、程度上都不同于其它学科的抽象,数学是借助于抽象建立起来 并借助于抽象发展的。
2.严密逻辑性 :数学具有严密的逻辑性,任何数学结论都必须经过逻辑推理的严格证明才能被承认。逻辑严密也并非数学所独有。
3.广泛应用性:数学作为一种工具或手段,几乎在任何一门科学技术及一切社会领域中都被运用。
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.