❶ 着名的数学公式有哪些
世界最着名的三大数学公式,分别是欧拉恒等式、高斯积分、傅立叶变换。
1、欧拉恒等式。
(1)数学有哪些重要公式扩展阅读:
伟大数学家欧拉:
莱昂哈德·欧拉(1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。
欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典着作。
欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。
网络-高斯积分
网络-傅立叶变换
❷ 高中数学必备公式有哪些
高中数学必备公式有三大基础函数的解析式,三角函数的诱导公式,三角恒等变换公式,求导公式,向量的运算,数量积公式,积分运算公式,立体几何体积公式,等差、等比数列的通项公式、前n项和公式等。
同角三角函数的基本关系式介绍
1、倒数关系:
tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1
2、的关系:
sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα
3、平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
六种基本函数:
函数名:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。
正弦函数:sinθ=y/r
余弦函数:cosθ=x/r
正切函数:tanθ=y/x
余切函数:cotθ=x/y
正割函数:secθ=r/x
余割函数:cscθ=r/y
❸ 数学常用公式有哪些
数学常用公式有如下:
1、长方形面积=长×宽,计算公式S=ab。
2、正方形面积=边长×边长,计算公式S=axa=a23、长方形周长=(长+宽)×2,计算公式C=(a+b)×24、正方形周长=边长×4,计算公式C=4a。
3、平行四边形面积=底×高,计算公式S=ah6、三角形面积=底×高÷2,计算公式S=axh÷2。
4、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)xh÷28、长方体体积=长×宽×高,计算公式V=abh。
5、圆的面积=圆周率×半径平方,计算公式V=Ttr210、正方体体积=棱长×棱长x棱长,计算公式V=a3。
6、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh12、圆柱的体积=底面积×高,计算公式V=sh。
❹ 数学常用公式有哪些
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标
圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
常用导数公式
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
❺ 数学公式高中有哪些
数学公式高中介绍如下:
一、数列定律公式:
1、等差数列中:S奇=na中,例如S13=13a7。
2、等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差。
3、等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立。
4、等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q。
二、常用数列公式:bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2。
三、抛物线公式:k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo。注:(xo,yo)均为直线过圆锥曲线所截段的中点。
四、绝对值不等式公式:∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣。
五、向量a在向量b上的射影公式:〔向量a×向量b的数量积〕/[向量b的模]。
❻ 数学公式全部有哪些
常用的数学公式:
1、长方形面积=长×宽,计算公式S=ab。
2、正方形面积=边长×边长,计算公式S=a×a=a2。
3、长方形周长=(长+宽)×2,计算公式C=(a+b)×2。
4、正方形周长=边长×4,计算公式C=4a。
5、平行四边形面积=底×高,计算公式S=ah。
6、三角形面积=底×高÷2,计算公式S=a×h÷2。
7、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2。
8、长方体体积=长×宽×高,计算公式V=abh。
9、圆的面积=圆周率×半径平方,计算公式V=πr2。
10、正方体体积=棱长×棱长×棱长,计算公式V=a3。
11、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh。
12、圆柱的体积=底面积×高,计算公式V=sh。
13、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数。
14、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数。
15、速度×时间=路程路程÷速度=时间路程÷时间=速度。
16、单价×数量=总价总价÷单价=数量总价÷数量=单价。
17、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率。
18、加数+加数=和和-一个加数=另一个加数。
19、被减数-减数=差被减数-差=减数差+减数=被减数。
20、因数×因数=积积÷一个因数=另一个因数。
21、被除数÷除数=商被除数÷商=除数商×除数=被除数。
❼ 常用的数学公式有哪些
常用的数学公式有哪些
常用的数学公式有哪些,数学是困扰很多人的一门课程,我们在上学的时候几乎每天都要接触数学公式,我们以此提高计算的效率,数学的公式很多,那么常用的数学公式有哪些呢?
1、长方形面积=长×宽,计算公式S=ab。
2、正方形面积=边长×边长,计算公式S=axa=a23、长方形周长=(长+宽)×2,计算公式C=(a+b)×24、正方形周长=边长×4,计算公式C=4a。
3、平行四边形面积=底×高,计算公式S=ah6、三角形面积=底×高÷2,计算公式S=axh÷2。
4、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)xh÷28、长方体体积=长×宽×高,计算公式V=abh。
5、圆的面积=圆周率×半径平方,计算公式V=Ttr210、正方体体积=棱长×棱长x棱长,计算公式V=a3。
6、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh12、圆柱的'体积=底面积×高,计算公式V=sh。
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、正方形c周长s面积a边长周长=边长×4c=4a面积=边长×边长s=a×a
7、正方体v:体积a:棱长表面积=棱长×棱长×6s表=a×a×6体积=棱长×棱长×棱长v=a×a×a
8、长方形c周长s面积a边长周长=(长+宽)×2c=2(a+b)面积=长×宽s=ab
9、长方体v:体积s:面积a:长b:宽h:高(1)表面积(长×宽+长×高+宽×高)×2s=2(ab+ah+bh)(2)体积=长×宽×高v=abh
10、三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高
11、平行四边形s面积a底h高面积=底×高s=ah
12、梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷2
13、圆形s面积c周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径c=∏d=2∏r(2)面积=半径×半径×∏
14、圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径
15、圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数
16、和差问题的公式(和+差)÷2=大数(和-差)÷2=小数
17、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
18、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)
一、概述
1、事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。
2、数+单位名称=名数
只带有一个单位名称的叫做单名数,如:5小时, 3千克。
带有两个或两个以上单位名称的叫做复名数,如:5小时6分,3千克500克。
56平方分米=(0.56)平方米 就是单名数转化成单名数 。
560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子。
3、高级单位与低级单位是相对的.比如,米相对于分米,就是高级单位,相对于千米就是低级单位.
二、长度
1、什么是长度
长度是一维空间的度量。
2、长度常用单位
* 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um)
3、单位之间的换算
1毫米 =1000微米、 1厘米 =10 毫米 、1分米 =10 厘米、 1米 =1000 毫米、1千米=1000 米
三、面积
1、什么是面积
面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。
2、常用的面积单位
* 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米
3、面积单位的换算
1平方厘米 =100 平方毫米 1平方分米=100平方厘米 1平方米 =100 平方分米
1公倾 =10000 平方米 1平方公里 =100 公顷
四、体积和容积
1、什么是体积、容积
①体积,就是物体所占空间的大小。
②容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
2、常用单位
①体积单位:立方米 、 立方分米 、 立方厘米
②容积单位:升 、 毫升
3、单位换算
①体积单位 :1立方米=1000立方分米 1立方分米=1000立方厘米
①容积单位 :1升=1000毫升 1升=1立方米 1毫升=1立方厘米
五、质量
1、什么是质量 质量,就是表示表示物体有多重。
2、常用单位 :吨(t)、 千克(kg)、 克 (g)
3、常用换算 1吨=1000千克 1千克=1000克
六、时间
1、什么是时间 是指有起点和终点的一段时间
2、常用单位 世纪、 年 、 月 、 日 、 时 、 分、 秒
3、单位换算
* 1世纪=100年(公元1年—100年是第一世纪,公元1901—2000是第二十世纪)
*平年一年365天,闰年一年366天。
* 1年12个月(一、三、五、七、八、十、十二是大月,大月有31 天 ;四、六、九、十一是小月小月,小月有30天;平年2月有28天 闰年2月有29天)
*闰年年份是4的倍数,整百年份须是400的倍数。
* 1天= 24小时 1小时=60分 1分=60秒
七、货币
1、什么是货币
货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。
2、常用单位 :元 、 角 、 分
3、单位换算 :1元=10角 1角=10分 1元=100分
常用单位换算
1、长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
2、面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
3、体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
4、重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
5、人民币单位换算
1元=10角 1角=10分 1元=100分
6、时间单位换算
1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒
❽ 数学公式有哪些啊
常用的数学公式:
1、长方形面积=长×宽,计算公式S=ab。
2、正方形面积=边长×边长,计算公式S=a×a=a2。
3、长方形周长=(长+宽)×2,计算公式C=(a+b)×2。
4、正方形周长=边长×4,计算公式C=4a。
5、平行四边形面积=底×高,计算公式S=ah。
6、三角形面积=底×高÷2,计算公式S=a×h÷2。
7、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2。
8、长方体体积=长×宽×高,计算公式V=abh。
9、圆的面积=圆周率×半径平方,计算公式V=πr2。
10、正方体体积=棱长×棱长×棱长,计算公式V=a3。
11、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh。
12、圆柱的体积=底面积×高,计算公式V=sh。
与圆相关的公式:
1、圆面积:S=πr²,S=π(d/2)²。(d为直径,r为半径)。
2、半圆的面积:S半圆=(πr^2)/2。(r为半径)。
3、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
4、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。
5、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。
6、扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:
S=n/360×πr²。
S=πr²×L/2πr=Lr/2(L为弧长,r为扇形半径)。
❾ 数学公式汇总有哪些
数学公式汇总有:
1、长方形面积=长×宽,计算公式S=ab。
2、正方形面积=边长×边长,计算公式S=a×a=a2。
3、长方形周长=(长+宽)×2,计算公式C=(a+b)×2。
4、正方形周长=边长×4,计算公式C=4a。
5、平行四边形面积=底×高,计算公式S=ah。
6、三角形面积=底×高÷2,计算公式S=a×h÷2。
7、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2。
8、长方体体积=长×宽×高,计算公式V=abh。
9、圆的面积=圆周率×半径平方,计算公式V=πr2。
10、正方体体积=棱长×棱长×棱长,计算公式V=a3。
11、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh。
12、圆柱的体积=底面积×高,计算公式V=sh。
常用数学公式:
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数。
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数。
3、速度×时间=路程路程÷速度=时间路程÷时间=速度。
4、单价×数量=总价总价÷单价=数量总价÷数量=单价。
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率。
6、加数+加数=和和-一个加数=另一个加数。
7、被减数-减数=差被减数-差=减数差+减数=被减数。
8、因数×因数=积积÷一个因数=另一个因数。
9、被除数÷除数=商被除数÷商=除数商×除数=被除数。