Ⅰ 想分析多组数据存在什么关系应该用什么数学建模
多组数据存在建立因变量与自变量之间的回归关系,应该用一元回归分析数学建模。
对于重复项的判断,基本思想是“排序与合并”,先将数据集中的记录按一定规则排序,然后通过比较邻近记录是否相似来检测记录是否重复。这里面其实包含了两个操作,一是排序,二是计算相似度。一般过程中主要是用plicated方法进行判断,然后将重复的样本进行简单的删除处理。
概念分析
将物理的或抽象对象的集合分组为由类似的对象组成的多个类。找出并清除那些落在簇之外的值(孤立点),这些孤立点被视为噪声。
回归试图发现两个相关的变量之间的变化模式,通过使数据适合一个函数来平滑数据,即通过建立数学模型来预测下一个数字,包括线性回归和非线性回归。
Ⅱ 数学建模几组数据怎么证明是非线性关系
回归分析方法可以!所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式).回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉
Ⅲ 数学建模研究什么与什么之间的关系一般用什么方法a
单单只是关系的话
那么就是格兰杰因果检验
如果你要的是某个方程的话
那么线性回归可以得到方程
相关性分析得到相关系数
主成分分析得到占比权重
当然以上是数学的
数模很奇葩,你题目不清,数模会研究到某物体与某物体的关系,那么上述方法全部不适用
最万能的说关系的应该就是条件概率了
Ⅳ 数学建模例题
例1 怎样使饮料罐制造用材最省的问题.
首先,把饮料罐假设为正圆柱体(实际上由于制造工艺等要求,它不可能正好是数学上的正圆柱体,但这样简化确实是近似的、合理的).在这种简化下,我们就可以来明确变量和参数了,例如可以假设:
V一罐装饮料的体积,r一半径,h一圆柱高,b一制罐铝材的厚度,l一制造中工艺上必须要求的折边长度。
上面的诸多因素中,我们先不考虑l这个因素.于是:
由于易拉罐上底的强度必须要大一点,因而在制造上其厚度为罐的其他部分厚度的3倍.因而制罐用材的总面积A= ,每罐饮料的体积V是一样的,因而V可以看成是一个常数(参数),解出A:
代入A得:
从而知道,用材最省的问题就是求半径r使A(r)达到最小。
A(r)的表达式就是一个数学模型。可以用多种精确的或近似的方法求A(r)最小时相应的r。
从而求得
例3 数据拟合模型
在数学建模过程中,常常需要确定一个变量依存于另一个或更多的变量的关系,即函数。但实际上确定函数的形式(线性形式、乘法形式、幂指形式或其它形式)时往往没有先验的依据。只能在收集的实际数据的基础上对若干合乎理论的形式进行试验,从中选择一个最能拟合有关数据,即最有可能反映实际问题的函数形式,这就是统计学中的拟合回归方程问题。
“人口问题”是我国最大社会问题之一,估计人口数量和发展趋势是我们制定一系列相关政策的基础。有人口统计年鉴,可查的我国从1949年至1994年人口数据智料如下:
年份 1949 1954 1959 1964 1969 1974 1979 1984 1989 1994
人口数 (百万)
541.67
602.66
672.09
704.99
806.71
908.59
975.42
1034.75
1106.76
1176.74
分析:
(1) 在直角坐标系上作出人口数的图象。
(2) 估计出这图象近似地可看做一条直线。
(3) 用以下几种方法(之一)确定直线方程,并算出1999年人口数。
方法一:先选择能反映直线变化的两个点,如(1949,541.67),(1984,1034.75)二点确定一条直线,方程为
N = 14.088 t – 26915.842
代入t =1999,得N »12.46亿
方法二:可以多取几组点对,确定几条直线方程,将t = 1999代入,分别求出人口数,在取其算数平值。
方法三:可采用“最小二乘法”求出直线方程。
设(x 1, y 1 ), (x 2, y 2), …, (x n, y n)是直角平面坐标系下给出的一组数据,若x 1<x 2<…<x n,我们也可以把这组数据看作是一个离散的函数。根据观察,如果这组数据图象“很象”一条直线(不是直线),我们的问题是确定一条直线y = bx +a ,使得它能"最好"的反映出这组数据的变化。
对个别观察值来说,它可能是正的,也可能是负的。为了不使它们相加彼此抵消,故"最好"应该是
它可能是正的,也可能是负的。为了不使它们相加彼此抵消,故"最好"应该是
例4 贷款买房问题
某居民买房向银行贷款6万元,利息为月利率1%,贷款期为25年,问该居民每月应定额偿还多少钱?
确定参变量:用n表示月份, 表示第n个月欠银行的钱,r表示月利率,x表示每月还钱数, 表示贷款额,则可得下表:
时间 欠银行款
初始
一个月后
二个月后
三个月后
n个月后
由递推关系式 可得
令 =60000元, ,n=300,r=0.01
得 元
因此,该居民每月应偿还632元。
餐厅选菜的规律
学校餐厅每天供应1000名学生用餐,每星期一有两样菜:A,B可供选择。调查资料表明,凡是在星期一选A菜的,下星期一会有20%改选B菜;而选B菜的,下星期一则有30%改选A,设 表示在第n个星期一选A,B的人数。
(1) 试用 表示 ;
(2) 证明: =0.5 +300;
(3) 若记 ,则
解:(1) =0.8 +0.3
(2) 因 ,故
一般地, =0.8 +0.3 =0.5 +300
(3) 若 ,则
用数学归纳法证之,设
则 =0.5 +300
=0.5[ +300
= .
此例仅供参考,好好努力学习
Ⅳ 数学建模方法和步骤
数学建模的主要步骤:
第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建
模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以
高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应
尽量使问题线性化、均匀化。
第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间
的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老
人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱
大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工
具愈简单愈有价值。
第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,
特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计
算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作
出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差
分析,数据稳定性分析。
数学建模采用的主要方法有:
(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模
型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策
等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。
(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型
1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状
态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构
。
3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的
可能变化,人为地组成一个系统。
Ⅵ 数学建模中的相关分析法的优缺点是什么啊
优点是可以找出不同因素之间的相关关系,是正相关、负相关或不相关。
缺点是一般只是定性分析,而不能定量分析,因此此法一般是结合回归分析一起的。
Ⅶ 请用数学建模的思想证明:在任意时刻,地球上至少有两个地点的温度是相同的。
怎么证明?
假定:地表温度是一个连续函数,随着地点逐渐变化而变化
容易知道,任意时刻:地球两极的地方温度是零下,而赤道上的温度是零上,任意时刻t,我们取南极和北极的两个地点A和B,他们温度低于0,同理在赤道上去两个地方C和D,他们的温度高于0,于是我们沿着地表分别连接AC和BD,很容易做到让他们没有交点(有交点也可以),又因为在连线上温度随着地点变化而连续变化,根据连续函数的介值定理,在AC和BD上分别有一点E和F,他们对应的温度是0°,又因为AC和BD不相交,所以EF不重合。
我没学过数学建模,但是我是这样想的
Ⅷ 怎么通过数学建模的方法来分析各数据之间的关系
相关系数和相关系数矩阵了解一下 分析数据间的线性关系大小
Ⅸ 数学建模笔记——评价类模型之灰色关联分析
这一篇就简单介绍一下灰色关联分析吧。灰色关联分析主要有两个作用,一是进行系统分析,判断影响系统发展的因素的重要性。第二个作用就是用于综合评价问题,给出研究对象或者方案的优劣排名。
不过这里我只能简单介绍一下,更加深入的原理,可能需要我专门学习之后才能清楚地表达出来。不过应用起来倒不是很难,部分原理理解不清晰应该也不影响使用,就当作了解一个新方法吧。
事实上越往后学,例如多元回归分析、运筹学相关、时间序列分析、各类预测模型、聚类分类等等,都涉及到很多有难度的数学推导。我自己即使有所理解和学习,但想要比较简单易懂地表达出来,还是需要更长时间沉淀的。所以目前写学习笔记,就只能简单说明一下原理,然后讲一下傻瓜式应用了。等我理解得更加深入了,再回头把写得不够深入清晰的文章翻新一下吧。
好的,言归正传,讲一讲灰色关联分析吧~
“在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。”
以上内容摘自网络,大概就是这么回事。灰色关联分析的研究对象往往是一个系统。系统的发展会受到多个因素的影响。我们常常想知道,在众多的影响因素中,哪些是主要因素,哪些是次要因素;哪些因素影响大,哪些因素影响小;哪些具有促进作用,哪些具有抑制作用等等。
数理统计中常常使用回归分析、方差分析、主成分分析等来探究这个问题。但上述的方法有一些共同的不足之处。例如这些方法都要求大量的数据,数据小则结果没有太大意义;有时候还会要求样本服从某个特殊分布,或者出现量化结果与定性分析不符合的情况。而灰色关联分析则可以较好地应对这种问题。
灰色关联分析对样本量的多少和样本有无规律并没有要求(当然样本量也不能太少,就两、三个样本还分析什么),量化结果基本上与定性分析相符合。灰色关联分析的基本思想是,根据序列曲线几何形状的相似程度来判断其联系是否紧密。曲线形状越接近,相应序列之间的关联度就越大,反之就越小。
嗯,对于上述原理,简单翻译一下,就是研究两个或多个序列(序列可以理解为系统中的因素或者指标)构成的曲线的几何相似程度。越相似,越说明他们的变化具有某种紧密的联系,也就是关联度高。所以这个方法也几乎是从纯数据的角度去研究关联性,如果两个没啥关系的指标,在曲线形状上表现得极为相似,那灰色关联分析就会认为二者关联程度很高。当然这只是一个比较极端的例子,对于一般的数据或者系统,用曲线形状来衡量关联度,也是有一定的道理的。
我们首先来介绍一下第一个应用,也是它的基本应用,系统分析。其分析的主要内容,就是给“影响系统发展的各因素”在重要程度或者说影响程度方面排序。用灰色关联分析的说法,就是给出各个因素与系统总体的关联度排序。关联度越高,说明相应因素对系统发展的影响越大。至于关联度,就是上文提到的曲线形状的近似程度了。嗯,其实模模糊糊还是可以理解灰色关联分析的,就是感觉上有一点儿不靠谱hhh
下面直接举个例子来讲解应用灰色关联分析的方法。(原理已经讲过了呀)
下表为某一地区国内生产总值的统计数据(单位:百万元),问该地区从2000年到2005年之间哪一种产业对GDP总量影响最大。
诺,这就是一个典型的系统分析问题,找出对GDP发展影响最大的一个因素。那我们需要怎么做呢?想想看,灰色关联分析的原理是,比较序列曲线几何形状的相似性,那当然要先把序列曲线给画出来呀。嗯,第一步就是画出序列曲线啦。
这里需要注意,我们想要研究各因素对系统总体的关联度,就需要找出一个可以代表系统总体发展的指标,这里就是GDP。类似的,我们想要反映教育发达程度,就可以使用国民平均接受教育的年数来代表;我们想要反映社会治安面貌,就可以使用刑事案件的发生率来表达;想要反映国民健康水平,就可以使用医院挂号次数来表达。不管怎样,总是需要找到一个指标,对系统整体的发展进行刻画。
别的不说,只看曲线形状,我就觉得第一产业对GDP的影响最小了。GDP一直往高处走,而第一产业曲线的形状几乎就是平着的。而单看相似性,好像第二产业,也就是灰色曲线与GDP曲线最为相似。不过画出图像只是为了给出一个直观的感受和分析,曲线形状的近似程度,还是需要计算的。
第二步是确定分析序列。分析序列分为两类,一类称之为母序列,也就是反映系统整体行为特征或发展的数据序列,可以理解为回归分析中的因变量,这里就是GDP这一列。另一类称之为子序列,也就是影响系统发展的因素组成的数据序列,可以理解为回归分析中的自变量,这里就分别是第一产业,第二产业,第三产业的生产总值数据。
第三步是对数据进行预处理。预处理我们讲到许多了,例如正向化,标准化,归一化等等。这里预处理的目的就是去除量纲的影响,以及缩小数据范围方便计算。数据标准化往往就是这个作用。数据标准化有多种方法,例如 标准化,就是原数据减去均值除以方差,随机变量往往使用这种方法;再比如 标准化,就是 。这两个方法之前都提到过。
那在这里,我们使用的标准化方法是每一个元素除以对应指标的均值,也就是 。嗯,我们展示一下处理之后的数据。用excel处理就可以了,比较方便。
第四步,计算处理后的子序列中各个元素与母序列相应元素的关联程度。记母序列为 ,子序列为 , , 。我们首先计算出母子序列最小差 ,之后再计算一下母子序列最大差 。计算如下表。
嗯,可以发现, 就是上表中最小的元素, 就是上表最大的元素。然后我们就可以计算子序列中每个元素与母序列相应元素的关联度啦。
灰色关联分析中,定义 ,其中 是分辨系数,一般位于 之间,往往取 。至于为什么要用这样一个公式定义子序列某元素与母序列相应元素的关联度呢?我就不晓得了……嗯,自行查阅,如果知道了请留言告诉我,谢谢!
第五步,计算各个序列,也就是指标与系统总体的关联程度。我们定义 ,用它来表达某个指标与系统总体发展的关联度。
嗯,其实就是第四步,求出了指标内部各个元素与母序列对应元素的关联度,把他们求个平均值,就可以看作该指标与系统总体的关联度了。如果你可以接受上文中的关联度计算公式,想来接受这个关联度均值,应该不是太难。
上图就是该题的最终计算结果了,计算证明,取分辨系数为0.5时,第三产业对国内生产总值的影响最大。好像跟那个图片不是很符合……毕竟从图片上直观感受,应该是第二产业的曲线形状与GDP的曲线形状最为相近,结果计算出的是第三产业。那,我们换一下 试试。
一番操作,还是第三产业对GDP影响最大。不过再次提醒,实际使用时, 是最常用的。
如果要强行解释一波,大概就是GDP的增长率是有起伏的,2002-2005之间每一段折线的斜率是不同的,而第二产业2002-2005之间,基本是一条直线过去,相比之下,第三产业的增长变化,更像GDP的变化……好吧就是强行解释一下啦
上图是每一年的增量情况……嗯,好像也是灰色和蓝色更像,不过2003-2005的增量,也就是2002-2005这四年来看,第三产业和GDP的增长更加相似。而第二产业只有一两年比较相似,所以综合来看,可能还是第三产业对GDP的影响更大吧。
嗯,强行解释完毕。
最后对于系统分析问题,还有两个问题。
嗯,系统分析讲到这里。
灰色关联分析用于综合评价的核心是,通过指标的关联度确定每个指标的权重,之后加权求和打分。
还是这二十条河流。评价水质,我们用灰色关联分析怎么做呢?
第一步、把所有指标进行正向化处理。正向化处理知道是什么吧,就是把极小型,中间型,区间型指标,全部转化为极大型指标。也就是要求数据值越大,最后得分越高。
第二步、对正向化的矩阵进行标准化。这里的标准化跟上面系统分析的标准化是一个东西。也就是用每一个元素除以对应指标的均值, ,把数据的范围缩小,消除量纲影响。将经过了上述两步处理的矩阵记为
第三步、将正向化、预处理之后的矩阵,每一行取出一个最大值,作为母序列。嗯,这里就是灰色关联分析用于综合评价问题需要注意的点了,也就是人为的构造出这么一个母序列。
第四步、按之前提到的方法,计算各个指标与母序列的灰色关联度,记为 。
第五步、计算各个指标的权重。每个指标的权重 。也就是关联度占总体关联度之和的比重。
第六步、我们求出每个评价对象的得分。对于第 个评价对象,其得分 。这里的 ,也就是上面提到的经过正向化和标准化的矩阵 。 中的每一个指标都是极大型指标,数值越大分数应该越高,同时消除了量纲的影响。因此我们直接把 中的元素作为每个指标下对每个评价对象的打分,然后对指标的分数进行加权求和。权重就是我们上面使用灰色关联度求得的权重。这样子,我们就求出了最终的分数。
第七步、对分数进行归一化处理。 ,这样子可以把分数全部放在0-1之间。归一化的好处就是,此时的分数可以解释成相应的研究对象在总体研究对象中“水某平”的百分比,也就是所处的位置。在水质题目中,也就是某河流水质情况在所有河流中所处的位置。嗯,用一个更通俗的说法,就类似于“您的成绩超越了百分之xx的同学”。这就是归一化的目的。
下图展示了对于水质情况的评价,使用TOPSIS方法与灰色关联分析的结果。
可以看到,这两种方法对于该问题最后的排序是不同的。第一名的取法就不一样,中间一部分顺序也比较不同,不过总体上还是比较相近的。hhh,不如再使用一个层次分析法,把三种方法得出的归一化后的分数,再取个平均,作为最终排序的依据。嗯,你看这个模型,是不是一下子就复杂了。
好的,本文就到这里,其实还是有几个迷惑的问题没有解决。
后两个好像可以强行解释,因为我们把正向化以及标准化后的矩阵当成分数矩阵了,所以取每一行的最大值,用来构造系统的最优得分序列,每一项方案就相当于系统的一次发展。之后计算关联度,就是看指标对系统最优序列的影响程度,影响程度越大,我们就赋给它更大的权重……嗯,强行解释
上面这三个问题,如果谁有比较好的想法,希望可以留个言告诉我,现在这里谢过!如果我以后慢慢理解了,也会在文章中更新。(不过发在微信公众号上可能是无法更新了,知乎和都可以)
灰色关联分析,我能分享的也就这么多了。如果想要继续了解,可以阅读《灰色系统理论及其应用》,刘思峰等着。嗯,灰色系统还有灰色系统预测,灰色组合模型,灰色决策,灰色聚类评估等应用,没事儿可以看看。
这两天知乎给我推送了一些数学建模相关的问答,其中一个是数学建模相关书籍。我把高赞回答推荐的书的电子版找了一下,如果需要的话,在微信公众号“我是陈小白”后台回复“数学建模书籍”即可。
以上
Ⅹ 如图:数学建模spss相关性分析的结果的表格数值该怎么看,该怎么表述。求大神们解释
spss的相关性分析结果是个对角线为1 的对阵矩阵
只要看上三角或下三角就行
每个变量结果有三行,第一行是相关系数,第二行是P值,第三行是样本量
第三行基本上不用管它
显着性值小于0.001的会有两个**,表示他相应的两个变量极显着相关
显着性值小于0.05的会有一个*,表示显着相关
你的这个结果是只有第一个变量无相关,其余的变量间显着相关