导航:首页 > 数字科学 > 大学数学求极限叫什么

大学数学求极限叫什么

发布时间:2022-09-10 10:57:04

1. 高等数学求极限有哪些方法

1、其一,常用的极限延伸,如:lim(x->0)(1+x)^1/x=e,lim(x->0)sinx/x=1。极限论是数学分析的基础,极限问题是数学分析中的主要问题之一,中心问题有两个:一是证明极限存在,极限问题是数学分析中的困难问题之一;二是求极限的值。

2、其二,罗比达法则,如0/0,oo/oo型,或能化成上述两种情况的类型题目。两个问题有密切的关系:若求出了极限的值,自然极限的存在性也被证明。

3、其三,泰勒展开,这类题目如有sinx,cosx,ln(1+x)等等可以迈克劳林展开为关于x的多项式。反之,证明了存在性,常常也就为计算极限铺平了道路。本文主要概括了人们常用的求极限值的若干方法,更多的方法,有赖于人们根据具体情况进行具体的分析和处理。


4、等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。(x趋近无穷的时候还原成无穷小)。

5、知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化。

2. 大学数学,求极限

数学的限制是一个很抽象的概念,而是开始学习总是转弯,不明白。但学习的极限为未来打下学习微积分的基础。点击看详细实施例:1 / X,当X→0,结果是无穷大。但是,这里0 X不仅可以作为X是一个小数目,你觉得多么小的数目,但比你想象的要小得多。因此,这样的结果只能是无穷大。有一个着名的中国古代数学家:脚重殴,取其半天,永远取之不尽,用之不竭。一英尺长的棍子,砍半天,一千年削减不已。这演算谜。真实,所以你学习,你会觉得非常浓厚的兴趣。 (事实上,自然“恩格斯”辩证法玩同样的方式)。

3. 求极限的方法有哪几种大学的

1、利用定义求极限:
例如:很多就不必写了!

2、利用柯西准则来求!
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于
任意的自然数m有|xn-xm|<ε.

3、利用极限的运算性质及已知的极限来求!
如:lim(x+x^0.5)^0.5/(x+1)^0.5
=lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5
=1.

4、利用不等式即:夹挤定理!
例子就不举了!

5、利用变量替换求极限!
例如lim (x^1/m-1)/(x^1/n-1)
可令x=y^mn
得:=n/m.

6、利用两个重要极限来求极限。
(1)lim sinx/x=1
x->0
(2)lim (1+1/n)^n=e
n->∞

7、利用单调有界必有极限来求!

8、利用函数连续得性质求极限

9、用洛必达法则求,这是用得最多得。

10、用泰勒公式来求,这用得也十很经常得。

4. 大学数学求极限的方法

1.代入法
2.无穷小的性质(无穷小*有界函数=无穷小)
3.取倒数法(整体取倒数、局部取倒数)
4.两个重要极限
5.等价无穷小
定义:
两个无穷小a、b,当lim b/a=1,称a和b是等价无穷小,记作a~b
定理:假设 a~a'、b~b',则:lim a/b=lim a'/b'
一定要注意:不能滥用等价无穷小的代换。

对于代数和中各无穷小不能分别代换。

等价无穷小的代换原则:乘除可换,加减忌换。
6.消除零因子法
有3个常用的手段可以消除0因子:分解因式、根式有理化、变量替换。

5. 高等数学的极限定义是什么意思

设{Xn}为一无穷数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时的一切Xn,均有不等式|Xn - a|<ε成立,那么就称常数a是数列{Xn}的极限,或称数列{Xn}收敛于a。记为
lim Xn = a 或Xn→a(n→∞)
如果数列没有极限,就说数列发散。

补充:n应该是X的下角标,我在Word里修改了,弄过来又变了……

6. 大学数学求极限

给你个方法提示。第一题直接洛必达法则等于0,第二题等价我穷小替换,分子是2x²,分母是x²,结果是2.第三题是固定题型,幂指函数极限,转换为e为底的指数形式,对指数求极限

7. 大学高等数学同济第七版中极限的概念怎么理解

通俗的理解就是当自变量x趋近于a(或∞)时,y趋近于某个常数c,y趋近于∞时叫极限不存在。
再通俗的解释,当x越来越靠近a时,y越来越靠近c

8. 数学的极限是什么

下面的回答来自http://ke..com/view/17644.htm
数列极限
定义
设|Xn|为一无穷数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时的一切Xn,均有不等式|Xn - a|<ε都立,那么就称常数a是数列|Xn|的极限,或称数列{Xn}收敛于a。记为 lim Xn = a 或Xn→a(n→∞) 如果数列没有极限,就说数列发散。
性质
1.唯一性:若数列的极限存在,则极限值是唯一的,且其子数列的极限与原数列的相等;
2.有界性:如果一个数列{xn}收敛(有极限),那么这个数列{xn}一定有界。 但是,如果一个数列有界,这个数列未必收敛。例如{xn}:1,-1,1,-1,……(-1)^n+1,……
3.保号性:如果一个数列{xn}收敛于a,且a>0(或a<0),那么存在正整数N>0,当n>N时,都有xn>0(或xn<0)。 4.收敛数列与其子列间的关系:(通俗讲:改变数列的有限项,不改变数列的极限。)如果数列{xn}收敛于a,那么它的任意子数列也收敛,且极限也是a。
常用数列的极限
当n→∞时,有 An=c 极限为c An=1/n 极限为0 An=x^n (∣x∣小于1) 极限为0
数列极限存在的充分条件
夹逼原理
设有数列{An},{Bn}和{Cn},满足 An ≤ Bn ≤ Cn, n∈Z*,如果lim An = lim Cn = a , 则有 lim Bn = a.
单调收敛定理
单调有界数列必收敛。[是实数系的重要结论之一,重要应用有证明极限 lim(1+1/n)^n 的存在性]
柯西收敛准则
设{Xn}是一个数列,如果任意ε>0, 存在N∈Z*, 只要 n 满足 n > N ,则对于任意正整数p,都有 |X(n+p) - Xn | < ε . 这样的数列{Xn}称为柯西数列, 这种渐进稳定性与收敛性是等价的。即互为充分必要条件。
函数极限
专业定义
设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε 那么常数A就叫做函数f(x)当 x→x。时的极限。
通俗定义
1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∞时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作limf(x)=A ,x→+∞。
2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。
函数的左右极限
1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a.
2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a.
注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限 一个函数是否在x(0)处存在极限,与它在x=x(0)处是否有定义无关,只要求y=f(x)在x(0)附近有定义即可。
两个重要极限
1、x→0,sin(x)/x →1
2、x→0,(1 + x)^1/x→e或 x→∞ ,(1 + 1/x)^x→e x→∞ ,(1 + 1/x)^(1/x) → 1 (其中e≈2.7182818...是一个无理数)
函数极限的运算法则
设lim f(x) ,lim g(x)存在,且令lim f(x) =A, lim g(x)=B,则有以下运算法则,
线性运算
加减: lim ( f(x) ± g(x) )= A ± B
数乘: lim( c* f(x))= c * A(其中c是一个常数)
非线性运算
乘除: lim( f(x) * g(x))= A * B lim( f(x) / g(x)) = A / B ( 其中B≠0 )
幂: lim( f(x) ) ^n = A ^ n

9. 大学常用极限公式有哪些

极限公式:

1、e^x-1~x (x→0)

2、 e^(x^2)-1~x^2 (x→0)

3、1-cosx~1/2x^2 (x→0)

4、1-cos(x^2)~1/2x^4 (x→0)

5、sinx~x(x→0)

6、tanx~x(x→0)

7、arcsinx~x(x→0)

8、arctanx~x(x→0)

9、1-cosx~1/2x^2(x→0)

10、a^x-1~xlna(x→0)

11、e^x-1~x(x→0)

12、ln(1+x)~x(x→0)

13、(1+Bx)^a-1~aBx(x→0)

14、[(1+x)^1/n]-1~1/nx(x→0)

15、loga(1+x)~x/lna(x→0)

(9)大学数学求极限叫什么扩展阅读:

高等数学极限中有“两个重要极限”的说法,指的是:

sinX/x →1( x→0 ),

与 (1+1/x)^x→e^x( x→∞)。

另外,关于等价无穷小,有:

sinx ~ tanx ~ arctanx ~ arcsinx ~ e^x-1 ~ ln(1+X)

~ (a^x-1)/lna ~[(1+x)^a-1]/a ~x( x→0),

1-cosx ~ x^2/2( x→0)。

10. 大学极限的数学定义

是指无限趋近于一个固定的数值
数列极限标准定义:对数列{xn},若存在常数a,对于任意ε>0,总存在正整数N,使得当n>N时,|xn-a|<ε成立,那么称a是数列{xn}的极限。
函数极限标准定义:设函数f(x),|x|大于某一正数时有定义,若存在常数A,对于任意ε>0,总存在正整数X,使得当x>X时,|f(x)-A|<ε成立,那么称A是函数f(x)在无穷大处的极限。
设函数f(x)在x0处的某一去心邻域内有定义,若存在常数A,对于任意ε>0,总存在正数δ,使得当 |x-xo|<δ时,,|f(x)-A|<ε成立,那么称A是函数f(x)在x0处的极限。

阅读全文

与大学数学求极限叫什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:743
乙酸乙酯化学式怎么算 浏览:1408
沈阳初中的数学是什么版本的 浏览:1358
华为手机家人共享如何查看地理位置 浏览:1049
一氧化碳还原氧化铝化学方程式怎么配平 浏览:890
数学c什么意思是什么意思是什么 浏览:1416
中考初中地理如何补 浏览:1307
360浏览器历史在哪里下载迅雷下载 浏览:706
数学奥数卡怎么办 浏览:1396
如何回答地理是什么 浏览:1030
win7如何删除电脑文件浏览历史 浏览:1060
大学物理实验干什么用的到 浏览:1490
二年级上册数学框框怎么填 浏览:1708
西安瑞禧生物科技有限公司怎么样 浏览:988
武大的分析化学怎么样 浏览:1252
ige电化学发光偏高怎么办 浏览:1341
学而思初中英语和语文怎么样 浏览:1660
下列哪个水飞蓟素化学结构 浏览:1427
化学理学哪些专业好 浏览:1490
数学中的棱的意思是什么 浏览:1066