导航:首页 > 数字科学 > 数学广角的内容要如何教学设计

数学广角的内容要如何教学设计

发布时间:2022-09-10 10:59:49

Ⅰ 新人教版 三年级下册 数学广角 用0,1,3,5能组成多少个没有重复 教学设计

新人教版三年级下册数学《初步感受简单事物的排列数》教案教学设计
第八单元  数学广角——搭配(二)
新知识点:
1、简单事物的排列数。
2、简单事物的组合数。
教学要求:
1、联系学生的生活实际,使学生通过观察、猜测、试验等活动,找出简单事物的排列数和组合数。
2、培养学生初步的观察、分析及推理能力,以及有顺序地、全面地思考问题的意识。
3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题。
4、渗透数学思想和方法,提高学生的数学素质。
5、使学生在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。
教学建议:
    “数学广角—搭配(二)“主要是向学生介绍简单的排列、组合知识,培养学生的数学思想和方法,使学生感受到数学知识在实际生活中的应用价值。排列与组合不仅是组合数学的最初步知识和学习概率统计的基础,而且也是日常生活中应用比较广泛的数学知识。因而在教学中要多注意抓住并把握好适合学生发展的有利素材。
1、选用学生身边的事例和一些生动有趣的活动,来调动学生参与数学的积极性和主动性。例如儿童节到了,穿什么衣服,有几种搭配方法,如何选择游览的路线等等。
2、注重学习方式的教学,培养学生的数学素质。本单元的内容活动性和操作性较强,要尽可能的采取学生动手实践,小组合作学习的方式进行教学,如排出不同的三位数,比赛场次问题等,让学生根据实际问题采用——列举、连线等方法感受简单事物的排列数与组合数。
3、注意数学思想和方法的渗透,培养学生的能力。每种活动结束后,要让学生发表自己的看法,初步培养学生有序、全面思考问题的意识。例如在活动前质疑:怎样才能保证不重不漏?
4、注意教学语言的表述,把握好教学目标。教学时要尽量避免出现排列、组合这些术语,以免影响学生的思维。用学生能接受的语言表达、交流即可,使学生感受简单事物的排列数和组合数在实际生活中的广泛应用。
第一课时   初步感受简单事物的排列数
课题        初步感受简单事物的排列数        课型        新课
教学目标        1、使学生通过动手操作找出简单事物的排列数,体会数学思想和方法。
2、培养学生初步的观察、分析、推理能力,以及有顺序地、全面地思考问题的意识。
3、培养学生对数学的兴趣记忆与人合作的良好习惯。
教学重点        使学生找到简单事物的排列数,体会书写思想和方法。
教学难点        使学生找到简单事物的排列数,体会书写思想和方法。
教具准备        数字卡片。



程        教学设计        教 学 反 思
        一、        学前准备
1、十位上是“2“的两位数共有多少个?
2、个位上是“0“的两位数共有多少个?
3、拿出准备好的数字卡片7、3、9.
二、探究新知
1、用0、1、3、5能组成多少个没有重复数字的两位数?
以小组为单位,合作完成,同时思考下面的问题。
(1)怎样摆能保证不重不漏?
(2)你们一共摆出了几个两位数?是怎样摆的?
(3)用什么方法记录既清楚明了又不重不漏?
2、学生以小组为单位探究,教师巡视、指导。
3、汇报:
(1)按照一定的顺序来摆就能保证不重不漏。
(2)按数位摆:
十位如果是1,可以摆出10、13、15;
十位如果是3,可以摆出30、31、35;
十位如果是5,可以摆出50、51、53。
(3)按照一定的顺序记录,就能保证不重不漏,清楚明了。
三、课堂作业新设计
1、教材练习二十二第1题。
(1)小组活动:找四个人扮演四位师徒,一个人记录。
(2)怎样交换位置更清楚明了?
(3)可以有多少种不同的排法?
2、教材练习二十二第2题。
独立排一排,并记录。注意排的顺序,体会方法。
3、教材练习二十二第3题。
四、思维训练
从写有1、2、3、4的四张卡片中任意选出2张,做一位数的乘法计算。共能组成多少个不同的乘法算式?共有多少个不同的积?写出这些算式。
五、板书设计

Ⅱ 小学数学广角找次品教学设计

现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。接下来我为你整理了小学数学广角找次品教学设计,一起来看看吧。

小学数学广角找次品教学设计(一)

教学内容:

新人教版小学五年级数学下册第八单元《数学广角———找次品》

教学目标:

1、通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。

2、学习用图形、符号等直观方式清晰、简明地表示数学思维的过程,培养逻辑思维的能力。

3、通过解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

教学重、难点:

让学生经历“比较——猜想——验证”的过程,寻求找次品的最优策略。

学情分析:

“找次品”的教学内容在“奥数”活动中时有出现,用图形帮助思考,对培养学生动手能力和思维能力都是比较好的,学生虽然是初次接触,但只要通过动手实践、小组讨论、探究等方式来解决问题,掌握一题多解的方法还是不难的。关键是最优化的解决策略,学生总结方法时有些难度,教师要适时引导。

教学过程:

一、弄清问题题意,激发探究欲望

师:今天这节课,我们就从某公司招聘员工的一道题目开始,假定你就是应聘者,想不想接受一下智慧的挑战?(出示课件)

问题是:假如你有81个外观完全一样的玻璃球,其中有一个球比其它的球稍轻,属于次品,如果只能利用没有砝码的天平来断定哪一个球轻,请问你最少要称几次才能保证找到较轻的那个球?

(一分钟思考)学生汇报:1次丶2次⋯…

师:请只用1次的同学说一说,你是怎样想的?

生1:

生2:

师:看来,1次虽少,但只是有可能,不能保证找到那个次品球,所以我们在思考这个问题的时候,不光要最少,还要以保证能找到为前提。

师:如果以“保证能找到”为前提,在同学们这么多的答案中,哪个次数是最少的呢?这一节课我们就一起来研究这个问题一一找次品。

二、简化问题,经历问题解决基本过程。

对于从81个小球中找次品的问题,比较复杂,那么怎样开始我们今天的研究呢?

生:可以从最少的试一试。

师:如果从最简单的入手研究,2个小球至少称几次?

生:1次。

师:如果是3个呢?

生猜测:2次?3次?1次?

师:老师这里有3瓶口香糖,其中有一瓶少了3粒,你觉得应该怎样称?

生汇报:先把其中的2瓶放在天平的两侧,如果左边下沉,就说明右边的是次品;如果右边的下沉,就说明左边的是次品;如果天平平衡,则没称的是次品。(学生边说老师边配合进行称量演示。)

师边演示课件边带领学生进一步感受推理过程:虽然有3瓶,而天平只有两个托盘,但是只需要把其中的2瓶放在天平的两侧,可能平衡,也可能不平衡,如果平衡⋯⋯如果不平衡⋯⋯不论是否平衡,利用推理,只要称1次肯定能将那个次品找出来。

师小结:看来2个和3个虽然数量不同,但是都只称1次就可以将次品找到。(将探究结果记录在表格中)

三、再次探究“关键数目”,初步感知、归纳规律

1、探究4个小球的情况。

(1)师:如果再增加一个球,现在有4个球,其中有一个是次品,一次可以保证找到次品吗?

生猜测:4次?3次?⋯⋯

师:纸上得来终觉浅,绝知此事要躬行。咱们还是亲自动手探究一下吧。请同学们与自己的同桌共同讨论一下。可以借用小方块摆一摆,也可以在纸上画一画,不论用什么样的方式,都要将思考过程简要记下来。

(生分组研究)

师:4个小球时,你们称了几次?

(生边汇报师边板书枝状图)

师:4个球有两种不同的测量方法,但结果测量的次数都一样,至少要2次才能保证找出次品。(把结果记录在表格中)

师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?请同学们用学具摆一摆,用笔画一画。

(生汇报师出示课件)

师:为什么把9个球分成(3,3,3)只要2次就可以找到次品呢?

(引导学生发现规律,把结果填入表格中)

师:4个球只需要2次就可以保证找到次品,9个球也只需要2次就能保证找到次品,那么大胆猜测一下,在4与9之间的5、6、7、8个球,至少需要几次就能找出次品呢?⋯⋯现在我们分组来研究一下:第1大组的同学研究5个小球的情况,依次研究6、7、8个球。

(生汇报,重点是8个球)(把结果填入表格中)

师:我们来比较一下,我们将8个小球分成(3,3,2)三组称2次,可是把8个小球分成(4,4)两组却称了3次,多称了1次,多称的1次多在哪儿呢?

生:小球数是2和3个时只用一次,把8分成(3,3,2)每组是3个或2个,3个或2个都只需要称1次就能找到次品。

师:你们明白他的意思吗?你们看,称(3,3)或(4,4),都只称1次就能确定次品在哪边,可是接下来,第一种是在3个或2个里找,只需一次,第二种要在4个里找,要用2次,所以会多一次。

师:大家最后称的次数不同,原因是什么呢?

生:分的组数不同,每组数量也不同。

师:那到底怎么分,才能既保证找到次品,又能使称的次数尽可能少呢?

(生分组讨论后汇报)

生1:应该分3组,因为天平有2个托盘⋯⋯

生2:每组的数目还要少。

生3:尽可能让每组数目比较接近,每次称完,次品就被确定在更小的范围内。

师:你们太了不起了,通过我们刚才的试验、讨论、交流,不仅解决了问题,而且发现了其中分组的秘密规律。

(师板书:分3组,尽量平均分。)

四、进一步发现规律

师:现在我们就应用分组的规律,再来一次实验,如果小球个数是10个(课件),该怎么分?称几次?

(生汇报,师板书:10(3,3,4)3次)(课件)

师:如果是27个呢?(课件)

(生汇报,师板书:27(9,9,9)3次(课件)

师:这位同学说的太好了,他先是分成了3组,然后用转化的思想把问题变成我们前面解决的9个小球的找次品问题了。

看来大家都掌握了分组规律。最开始的招聘问题,81个小球,大家能解决了吗?谁有了答案?把结果直接写在黑板上。

(生讨论并汇报结果)(课件)

师:你能发现它和前面我们解决的27个,9个,3个,有什么关系吗?

(小组研究)

生汇报:被测小球数目是几个3相乘就称几次,比如4个3相乘是81,81个小球就只需称4次。

师:你们很了不起,既解决了公司“招聘”问题,又发现了“被测物品数目与称的最少次数之间”神秘的规律。

五、课堂小结

随着招聘问题的解决,今天的课也即将结束,回顾我们整节课的经历,从最初的招聘问题,回归到解决2、3的问题,再到研究8、9发现分组规律,直至研究了更大的数目,像27、81这样的数目,发现了被测物品数目与称的最少次数之间的一些关系。

在这一路的探究过程中,我们不断思考,不断实践,不断发现,我想大家在收获知识的同时,一定收获了更多的智慧。最后有两句话与大家共勉:(课件出示)

探究问题,学会化繁为简

解决问题,要有优化意识

Ⅲ 什么是数学广角

“数学广角”是义务教育课程标准实验教科书从二年级上册开始新增设的一个单元,是新教材在向学生渗透数学思想方法方面做出的新的尝试。

教材以学生熟悉而又感兴趣的生活场景为依托,重在向学生渗透这些数学思想方法,将学习活动置于模拟情景中,给学生提供操作和活动的机会,初步培养学生有顺序地、全面地思考问题的意识,为学生今后学习组合数学和学习概率统计奠定基础。

(3)数学广角的内容要如何教学设计扩展阅读

丁丽主编了《数学广角学什么与教什么》这本书中明确分析过数学广角,首先对“数学广角”的每一个专题都进行了“教材解读”,分析了每个课时的“教学目标”、“教学重点、难点”,琢磨了“编者意图”。

1.等量代换

一个量用与它相等的量去代替,它是数学中一种基本的思想方法,也是代数思想方法的基础。

如果a=b,b=c,那么a=c。真正使用到的等量代换为:∀f(a=b∧f(a)→f(b)),其中f是合式公式广义的等量代换举例来说就是:“如果李四是张三的同义词,张三是人,那么李四是人”。

2.植树问题

为使其更直观,用图示法来说明。树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。

3.数字编码

大多数数字编码采用位置表示法,即任何一个数字量都可以通过一些数字的和来表示。根据这些数字码在表示式中所处的不同位置,有不同的值。也就是说,每个不同的位置,都具有自己的“权"。

Ⅳ 六年级下册数学广角的教学流程。急用!!!!!!!谢谢了!!

数学广角
第一课时《抽屉原理》
教学内容:教材第70、71页的例1、例2
教学目标:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、会用“抽屉原理”解决简单的实际问题。
3、通过操作发展学生的类推能力,形成比较抽象的数学思维。
教学重点:认识“抽屉原理”。
教学难点:灵活运用“抽屉原理”解决实际问题。
教学方法:小组合作,自主探究。
教学准备:若干根小棒,4个纸杯。
教学过程:
一、创设情境,导入新知
老师组织学生做“抢椅子”游戏( 请3位同学上来,摆开2条椅子),并宣布游戏规则。
师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。
二、自主学习,初步感知
(一)出示例1:4枝铅笔,3个文具盒。
1、观察猜测
猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?
2、自主探究
(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。
(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。
(3)交流讨论,汇报。可能如下:
第一种:枚举法。
用实物摆一摆,把所有的摆放结果都罗列出来。
第二种:假设法。
如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。
第三种:数的分解。
把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。
(4)、比较优化。
请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100枝铅笔放进99个盒子里呢?怎样解释这一现象?
师:为什么不采用枚举法来验证呢?
数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。
3、引导发现
只要放的铅笔数比盒子的数量多1 ,不管怎么放,总有一个盒子里至少放进2枝铅笔。
(二)出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书? 7本书会怎样呢?9本呢?

Ⅳ 植树问题教学设计

《植树问题》是新人教版小学五年级数学上册数学广角的内容。本节课是第一课时,是植树问题中比较简单的情况。下面是我收集整理的植树问题教学设计,欢迎阅读参考!

教学目标:

1.通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

2.培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

教学重点:

发现并理解两端都栽的植树问题中间隔数与棵数的规律。

教学难点:

运用“植树问题”的解题思想解决生活中的实际问题。

教学准备:

课件、直尺、学习纸。

教学过程:

(一)创设情境,引入新课

教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)

教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)

(二)充分经历,探究新知

1.大胆猜测,引发冲突。

(1)读一读,说一说。

课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:

“每隔5米栽一棵”是什么意思?

使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。

“两端要栽”是什么意思?“一边”是什么意思?

可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?

(2)猜一猜,想一想。

让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。

教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?

引导学生用画线段图的方法进行验证。

(设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)

2.借助操作,探究规律。

(1)初步体验,化繁为简。

教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?

教师:为什么觉得很麻烦?

学生:因为100米里面有20个5米,太多了。

教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的'情况入手进行研究。比如,我们可以先选取100米中的一小段研究。

(2)教师演示,直观感知。

教师演示课件,边演示边说明。

教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)

教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?

引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。

(设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)

(3)动手操作,初步体验。

让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。

教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?

教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?

引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。

(4)合理推测,感知规律。

教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。

学生填写表格,教师巡视,对个别学生进行指导和说明。

学生填写完表格后,小组交流汇报结果。

(5)归纳概括,理解规律。

教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。

学生汇报自己的发现。

引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。

教师:为什么两端都栽树,棵数比间隔数多1?

学生回答后,教师借助课件演示帮助学生进一步直观理解。

(设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)

(6)即时巩固,强化规律。

教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?

(设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的棵数和间隔数之间的关系。)

3.运用规律,验证例1。

教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?

教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?

学生尝试列式解决问题,教师巡视,有针对性地指导。

全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?

(设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)

(三)回归生活,实际应用

1.“做一做”第1题。

教师:这道题里没有植树呀,能用我们今天学的方法解决吗?

使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。

教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。

2.练习二十四1、2、3题。

让学生进一步感受到植树问题在生活中的广泛应用。

3.练习二十四第4题。

教师:这一题与例题有什么不同?

老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。

教师:你是怎样计算的?为什么用36减1?

(设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)

(四)课堂小结,畅谈收获。

反思

通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。

一、创设愉悦氛围,让游戏走入情境。

从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。

二、注重自主探索,让体验走入方法。

体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。

三、倡导知识运用,让建模走入生活。

“数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。

但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。

Ⅵ 怎样在数学广角中渗透数学思想方法的教学策略

模型思想在数学思想方法中有非常重要的地位。正是因为数学在各个领域的广泛应用,不但促进了科学和人类的进步,也使人们对数学有了新的认识:数学不仅仅是数学家的乐园,它特不应是抽象和枯燥的代名词,它是全人类的朋友,也是广大中小学生的朋友。教师在教学中结合数学的应用和解决问题的数学,要贯彻《数学课程标准》的理念,要注重渗透模型思想。小学数学教学过程中的建模策略有以下几点:首先,精选问题,巧设情境,培养建模兴趣。数学是源于生活、寓于生活并用于生活的一门学科,每个数学模型都有着现实的“生活原型”.。“生活原型”是数学模型的构建基础,也是解决现实问题的需要.。在教学过程中,根据数学问题,巧妙地设置现实情境,通过这个现实的“生活原型”来引导学生以数学建模的方式解决问题.例如在教学“平均数”概念时,可以提出一个情境:8个男生和7个女生各为一组,进行演讲比赛,哪一组演讲的水平更高呢?学生们提出并讨论了一些比较方法,比如按每一组的最高分进行比较,或者按每一组的总成绩计算,这些方法都有着明显的不足之处,最终都被否定了,此时,提出按“平均数”进行比较的方法正是恰到好处.构建关于“平均数”的模型就成为了学生们解决问题的现实需求,这样一来,不仅让学生们直观深刻地理解了平均数概念及平均数模型的原型、条件、适用环境等,而且培养了学生们利用数学模型去解决实际问题的兴趣.。其次,把握过程,抽象事物本质,实现模型完整构建。要将数学模型渗透于数学教学中,就必须准确把握从现实的“生活原型”到抽象的数学模型的过渡过程.。设置生动具体的现实情境问题,只是数学建模教学的开始,这一现实原型仅仅给学生提供了进行模型构建的基础素材,在接下来的教学过程中,还需要对从具体事物向抽象模型跃进的过程有着准确把握,并进行有效组织,否则就不能实现成功的建模.。要达到良好的教学效果,老师应当引导学生从对具体事物的感知上升到对抽象问题的认识和理解。数学是一门“模型”的学科,数学模型是数学知识的核心内容,其作用当然也是数学应用的核心价值.在小学数学教学过程中,活用“数学模型”,将其渗透到实际教学环节中去,可以帮助学生更好地理解数学概念模型,深刻领会所学知识,顺利地建构数学知识体系,进而使得学生应用数学方法解决现实问题的能力显着增强,推动学生数学思维素质的稳步提升。数学模型的构建,是为了解决实际的问题.而构建数学模型这一活动,本身就是一种对数学知识和现实背景的再创造。所以,在学生学习数学知识的过程中,老师要引导学生根据自身的实际体验及自己的思维方式来经历并体验这种“再创造”的整个过程,培养学生的数学模型思维和应用数学模型方法解决现实问题的能力。下面就一教学片段来说一说:【教学片段】出示情境图。师:谁来说一说第一幅图,你看到了什么?生:从图中我看到了有5个小朋友在浇花。师:第二幅图呢?生:第二幅图中有2个小朋友去提水了,剩下3个小朋友。师:你能把两幅图的意思连起来说吗?生:有5个小朋友在浇花,走了2个,还剩下3个。师:同学们观察得很仔细,也说得很好。你们能根据这两幅图的意思提一个数学问题吗?生:有5个小朋友在浇花,走了2个,还剩几个?生(齐):3个。师:对,大家能不能用圆片代替小朋友,将这一过程摆一摆呢?(教师在行间指导学生摆圆片,并请一生将圆片摆在情境图的下面。)师:(结合情境图和圆片说明)5个小朋友在浇花,走了2个,还剩3个;从5个圆片中拿走2个,还剩3个,都可以用同一个算式(学生齐接话:5-2=3)来表示。(在圆片下板书:5-2=3)生齐读:5减2等于3。师:谁来说一说这里的5表示什么?2、3又表示什么呢?……师:同学们说得真好!在生活中存在着许许多多这样的数学问题,5-2=3还可以表示什么呢?请同桌互相说一说。生1:有5瓶牛奶,喝掉2瓶,还剩3瓶。生2:树上有5只小鸟,飞走2只,还剩3只。……除了教学充分外,更主要的是渗透了初步的数学建模思想,训练的是学生抽象、概括、举一反三的学习能力。且这种训练并不是简单、生硬地进行,而是和低年级学生数学学习的特点相贴切——由具体、形象的实例开始,借助于操作予以内化和强化,最后通过思维发散和联想加以扩展和推广,赋予“5-2=3”以的“模型”意义。

阅读全文

与数学广角的内容要如何教学设计相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:743
乙酸乙酯化学式怎么算 浏览:1408
沈阳初中的数学是什么版本的 浏览:1358
华为手机家人共享如何查看地理位置 浏览:1049
一氧化碳还原氧化铝化学方程式怎么配平 浏览:890
数学c什么意思是什么意思是什么 浏览:1416
中考初中地理如何补 浏览:1307
360浏览器历史在哪里下载迅雷下载 浏览:706
数学奥数卡怎么办 浏览:1396
如何回答地理是什么 浏览:1030
win7如何删除电脑文件浏览历史 浏览:1060
大学物理实验干什么用的到 浏览:1490
二年级上册数学框框怎么填 浏览:1708
西安瑞禧生物科技有限公司怎么样 浏览:988
武大的分析化学怎么样 浏览:1252
ige电化学发光偏高怎么办 浏览:1341
学而思初中英语和语文怎么样 浏览:1660
下列哪个水飞蓟素化学结构 浏览:1427
化学理学哪些专业好 浏览:1490
数学中的棱的意思是什么 浏览:1066