导航:首页 > 数字科学 > 数学汇编被认为是什么

数学汇编被认为是什么

发布时间:2022-09-10 13:19:30

❶ 什么是汇编语言

汇编语言 汇编语言(Assembly Language)是面向机器的程序设计语言.汇编语言是一种功能很强的程序设计语言,也是利用计算机所有硬件特性并能直接控制硬件的语言。汇编语言”作为一门语言,对应于高级语言的编译器,需要一个“汇编器”来把汇编语言原文件汇编成机器可执行的代码。高级的汇编器如MASM, TASM等等为我们写汇编程序提供了很多类似于高级语言的特征,比如结构化、抽象等。在这样的环境中编写的汇编程序,有很大一部分是面向汇编器的伪指令,已经类同于高级语言。现在的汇编环境已经如此高级,即使全部用汇编语言来编写windows的应用程序也是可行的,但这不是汇编语言的长处。汇编语言的长处在于编写高效且需要对机器硬件精确控制的程序。
在汇编语言中,用助记符(Mnemonic)代替操作码,用地址符号(Symbol)或标号(Label)代替地址码。这样用符号代替机器语言的二进制码,就把机器语言变成了汇编语言。因此汇编语言亦称为符号语言。
使用汇编语言编写的程序,机器不能直接识别,要由一种程序将汇编语言翻译成机器语言,这种起翻译作用的程序叫汇编程序,汇编程序是系统软件中语言处理系统软件。汇编语言编译器把汇编程序翻译成机器语言的过程称为汇编。
汇编语言比机器语言易于读写、调试和修改,同时具有机器语言全部优点。但在编写复杂程序时,相对高级语言代码量较大,而且汇编语言依赖于具体的处理器体系结构,不能通用,因此不能直接在不同处理器体系结构之间移植。
汇编语言的特点:
1.面向机器的低级语言,通常是为特定的计算机或系列计算机专门设计的。
2.保持了机器语言的优点,具有直接和简捷的特点。
3.可有效地访问、控制计算机的各种硬件设备,如磁盘、存储器、CPU、I/O端口等。
4.目标代码简短,占用内存少,执行速度快,是高效的程序设计语言。
5.经常与高级语言配合使用,应用十分广泛。
汇编语言的应用:
1.70%以上的系统软件是用汇编语言编写的。
2.某些快速处理、位处理、访问硬件设备等高效程序是用汇编语言编写的。
3.某些高级绘图程序、视频游戏程序是用汇编语言编写的。
汇编语言是我们理解整个计算机系统的最佳起点和最有效途径
人们经常认为汇编语言的应用范围很小,而忽视它的重要性。其实汇编语言对每一个希望学习计算机科学与技术的人来说都是非常重要的,是不能不学习的语言。
所有可编程计算机都向人们提供机器指令,通过机器指令人们能够使用机器的逻辑功能。
所有程序,不论用何种语言编制,都必须转成机器指令,运用机器的逻辑功能,其功能才能得以实现。
机器的逻辑功能,软件系统功能构筑其上,硬件系统功能运行于下。
汇编语言直接描述机器指令,比机器指令容易记忆和理解。通过学习和使用汇编语言,能够感知、体会、理解机器的逻辑功能,向上为理解各种软件系统的原理,打下技术理论基础;向下为掌握硬件系统的原理,打下实践应用基础。
学习汇编语言,向上可以理解软件,向下能够感知硬件,是我们理解整个计算机系统的最佳起点和最有效途径。

❷ 有哪些数学着作

《算数书》 《算经十书》 《九章算术》 《数书九章》 《测圆海镜》 《益古演段》 《详解九章算法》 《杨辉算法》 《算学启蒙》 《四元玉鉴》 《九章算法比类大全》 《算法统宗》 《数理精蕴》 《梅氏丛书辑要》 《视学》 《割圆密率捷法》 《畴人传》 《衡斋算学遗书合刻》 《李氏遗书》 《求表捷术》 《则古昔斋算学》 《莱因德纸草书》 《几何原本》 《已知条件》 《数沙者》 《论球和圆柱》 《抛物弓形求积》 《论劈锥曲面体与椭球体》 《圆锥曲线论》(阿波罗尼奥斯) 《度量论》 《算术入门》 《天文学大成》 《算术》 《数学汇编》 《阿耶波多历数书》 《婆罗摩历算书》 《代数学》(花拉子米) 《代数学》(奥马?海亚姆) 《天文系统极致》 《算盘书》 《论完全四边形》 《论各种三角形》 《算术、几何、比及比例全书》 《大术》 《数量概论》 《砺智石》 《代数学》(邦贝利) 《论十进》 《分析术人门》 《奇妙的对数表的描述》 《不可分量几何学》 《平面与立体轨迹引论》 《求极大值与极小值的方法》 《几何学》 《圆锥曲线论稿》 《圆锥曲线论》(帕斯卡) 《无穷算术》 《几何学讲义》 《运用无穷多项方程的分析学》 《流数法与无穷级数》 《自然哲学的数学原理》 《广义算术》 《一种求极大、极小值与切线的新方法》 《发微算法》 《机会论》 《猜度术》 《正的和反的增量方法》 《流数通论》 《寻求具有某种极大或极小性质的曲线的技巧》 《无穷分析引论》 《代数学人门》 《数学史》 《分析力学》 《解析函数论》 《几何学基础》 《画法几何学》 《天体力学》 《概率的分析理论》 《算术研究》 《纯粹分析的证明》 《分析教程》 《关于定积分理论的报告》 《热的分析理论》 《论图形的射影性质》 《高于四次的一般方程的代数求解之不可能性的证明》 《关于曲面的一般研究》 《数学分析在电磁理论中的应用》 《椭圆函数论新基础》 《代数通论》 《论方程的根式可解性条件》 《绝对空间的科学》 《几何图形相互依赖性的系统发展》 《具有完善的平行线理论的新几何学原理》 《线性扩张论》 《位置的几何学》 《形式逻辑》 《单复变函数的一般理论基础》 《关于用三角级数表示函数的可能性》 《关于几何基础的假设》 《四元数讲义》 《思维规律的研究》 《数论讲义》 《置换与代数方程》 《连续性与无理数》 《对于近代几何学研究的比较考察》 《概念语言》 《关于由微分方程确定的曲线》 《天体力学新方法》 《位置分析》 《函数论论文集》 《算术原理》 《连分式研究》

❸ 从数学的发展历史来看,数学的研究对象各个阶段有哪些

数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期:
1.数学萌芽期(公元前600年以前);
2.初等数学时期(公元前600年至17世纪中叶);
3.变量数学时期(17世纪中叶至19世纪20年代);
4.近代数学时期(19世纪20年代至第二次世界大战);
5.现代数学时期(20世纪40年代以来)
在数学萌芽期这一时期,数学经过漫长时间的萌芽阶段,在生产的基础上积累了丰富的有关数和形的感性知识。到了公元前六世纪,希腊几何学的出现成为第一个转折点,数学从此由具体的、实验的阶段,过渡到抽象的、理论的阶段,开始创立初等数学。此后又经过不断的发展和交流,最后形成了几何、算术、代数、三角等独立学科。世界上最古老的几个国家都位于大河流域:黄河流域的中国;尼罗河下游的埃及;幼发拉底河与底格里斯河的巴比伦国;印度河与恒河的印度。这些国家都是在农业的基础上发展起来的,因此他们就必须掌握四季气候变迁的规律。
现在对于古巴比伦数学的了解主要是根据巴比伦泥版,这些数学泥版表明,巴比伦自公元前2000年左右即开始使用60进位制的记数法进行较复杂的计算了,并出现了60进位的分数,用与整数同样的法则进行计算;已经有了关于倒数、乘法、平方、立方、平方根、立方根的数表;借助于倒数表,除法常转化为乘法进行计算。巴比伦数学具有算术和代数的特征,几何只是表达代数问题的一种方法。这时还没有产生数学的理论。对埃及古代数学的了解,主要是根据两卷纸草书。从这两卷文献中可以看到,古埃及是采用10进位制的记数法。埃及人的数学兴趣是测量土地,几何问题多是讲度量法的,涉及到田地的面积、谷仓的容积和有关金字塔的简易计算法。但是由于这些计算法是为了解决尼罗河泛滥后土地测量和谷物分配、容量计算等日常生活中必须解决的课题而设想出来的,因此并没有出现对公式、定理、证明加以理论推导的倾向。埃及数学的一个主要用途是天文研究,也在研究天文中得到了发展。由于地理位置和自然条件,古希腊受到埃及、巴比伦这些文明古国的许多影响,成为欧洲最先创造文明的地区。
希腊的数学是辉煌的数学,第一个时期开始于公元前6世纪,结束于公元前4世纪。泰勒斯开始了命题的逻辑证明,开始了希腊伟大的数学发展。进入公元前5世纪,爱利亚学派的芝诺提出了四个关于运动的悖论,柏拉图强调几何对培养逻辑思维能力的重要作用,亚里士多德建立了形式逻辑,并且把它作为证明的工具;德谟克利特把几何量看成是由许多不可再分的原子所构成。第二个时期自公元前4世纪末至公元1世纪,这时的学术中心从雅典转移到了亚历山大里亚,因此被称为亚历山大里亚时期。这一时期有许多水平很高的数学书稿问世,并一直流传到了现在。公元前3世纪,欧几里得写出了平面几何、比例论、数论、无理量论、立体几何的集大成的着作几何原本,第一次把几何学建立在演绎体系上,成为数学史乃至思想史上一部划时代的名着。之后的阿基米德把抽象的数学理论和具体的工程技术结合起来,根据力学原理去探求几何图形的面积和体积,奠定了微积分的基础。阿波罗尼写出了《圆锥曲线》一书,成为后来研究这一问题的基础。公元一世纪的赫伦写出了使用具体数解释求积法的《测量术》等着作。二世纪的托勒密完成了到那时为止的数理天文学的集大成着作《数学汇编》,结合天文学研究三角学。三世纪丢番图着《算术》,使用简略号求解不定方程式等问题,它对数学发展的影响仅次于《几何原本》。希腊数学中最突出的三大成就--欧几里得的几何学,阿基米德的穷竭法和阿波罗尼的圆锥曲线论,标志着当时数学的主体部分--算术、代数、几何基本上已经建立起来了。
罗马人征服了希腊也摧毁了希腊的文化。公元前47年,罗马人焚毁了亚历山大里亚图书馆,两个半世纪以来收集的藏书和50万份手稿竞付之一炬。
从5世纪到15世纪,数学发展的中心转移到了东方的印度、中亚细亚、阿拉伯国家和中国。在这1000多年时间里,数学主要是由于计算的需要,特别是由于天文学的需要而得到迅速发展。古希腊的数学看重抽象、逻辑和理论,强调数学是认识自然的工具,重点是几何;而古代中国和印度的数学看重具体、经验和应用,强调数学是支配自然的工具,重点是算术和代数。
印度的数学也是世界数学的重要组成部分。数学作为一门学科确立和发展起来。印度数学受婆罗门教的影响很大,此外还受希腊、中国和近东数学的影响,特别是受中国的影响。
此外,阿拉伯数学也有着举足轻重的作用,阿拉伯人改进了印度的计数系统,"代数"的研究对象规定为方程论;让几何从属于代数,不重视证明;引入正切、余切、正割、余割等三角函数,制作精密的三角函数表,发现平面三角与球面三角若干重要的公式,使三角学脱离天文学独立出来。
在我国,春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。战国时期的百家争鸣也促进了数学的发展,秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学着作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名着。魏、晋时期赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。这之后,我国数学经过像秦九邵、祖冲之、郭守敬、程大位这样的数学家进一步发展了我国的数学事业。
在西欧的历史上,中世纪的黑暗在一定程度上阻碍了数学的发展,15世纪开始了欧洲的文艺复兴,使欧洲的数学得以进一步发展,15世纪的数学活动集中在算术、代数和三角方面。缪勒的名着《三角全书》是欧洲人对平面和球面三角学所作的独立于天文学的第一个系统的阐述。16世纪塔塔利亚发现三次方程的代数解法,接受了负数并使用了虚数。16世纪最伟大的数学家是伟达,他写了许多关于三角学、代数学和几何学的着作,其中最着名的《分析方法入门》改进了符号,使代数学大为改观;斯蒂文创设了小数。17世纪初,对数的发明是初等数学的一大成就。1614年,耐普尔首创了对对数,1624年布里格斯引入了相当于现在的常用对数,计算方法因而向前推进了一大步。至此,初等数学的主体部分--算术、代数与几何已经全部形成,并且发展成熟。
变量数学时期从17世纪中叶到19世纪20年代,这一时期数学研究的主要内容是数量的变化及几何变换。这一时期的主要成果是解析几何、微积分、高等代数等学科。
17世纪是一个开创性的世纪。这个世纪中发生了对于数学具有重大意义的三件大事。 首先是伽里略实验数学方法的出现,它表明了数学与自然科学的一种崭新的结合。其特点是在所研究的现象中,找出一些可以度量的因素,并把数学方法应用到这些量的变化规律中去。第二件大事是笛卡儿的重要着作《方法谈》及其附录《几何学》于1637年发表。它引入了运动着的一点的坐标的概念,引入了变量和函数的概念。由于有了坐标,平面曲线与二元方程之间建立起了联系,由此产生了一门用代数方法研究几何学的新学科--解析几何学。这是数学的一个转折点,也是变量数学发展的第一个决定性步骤。第三件大事是微积分学的建立,最重要的工作是由牛顿和莱布尼兹各自独立完成的。他们认识到微分和积分实际上是一对逆运算,从而给出了微积分学基本定理,即牛顿-莱布尼兹公式。17世纪的数学,发生了许多深刻的、明显的变革。在数学的活动范围方面,数学教育扩大了,从事数学工作的人迅速增加,数学着作在较广的范围内得到传播,而且建立了各种学会。在数学的传统方面,从形的研究转向了数的研究,代数占据了主导地位。在数学发展的趋势方面,开始了科学数学化的过程。最早出现的是力学的数学化,它以1687年牛顿写的《自然哲学的数学原理》为代表,从三大定律出发,用数学的逻辑推理将力学定律逐个地、必然地引申出来。18世纪数学的各个学科,如三角学、解析几何学、微积分学、数论、方程论,得到快速发展。19世纪20年代出现了一个伟大的数学成就,它就是把微积分的理论基础牢固地建立在极限的概念上。柯西于1821年在《分析教程》一书中,发展了可接受的极限理论,然后极其严格地定义了函数的连续性、导数和积分,强调了研究级数收敛性的必要,给出了正项级数的根式判别法和积分判别法。而在这一时期,非欧几何的出现,成为数学史上的一件大事,非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。这时人们发现了与通常的欧几里得几何不同的、但也是正确的几何--非欧几何。非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。非欧几何的发现,黎曼和罗巴切夫斯基功不可灭,黎曼推广了空间的概念,开创了几何学一片更广阔的领域--黎曼几何学。后来,哈密顿发现了一种乘法交换律不成立的代数--四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗瓦开创了近世代数学的研究。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了被称为"分析的算术化"的着名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。
20世纪40~50年代,世界科学史上发生了三件惊天动地的大事,即原子能的利用、电子计算机的发明和空间技术的兴起。此外还出现了许多新的情况,促使数学发生急剧的变化。1945年,第一台电子计算机诞生以后,由于电子计算机应用广泛、影响巨大,围绕它很自然要形成一门庞大的科学。计算机的出现更是促进了数学的发展,使数学分为了三个领域,纯粹数学,计算机数学,应用数学。 现代数学虽然呈现出多姿多彩的局面,但是它的主要特点可以概括如下:(1)数学的对象、内容在深度和广度上都有了很大的发展,分析学、代数学、几何学的思想、理论和方法都发生了惊人的变化,数学的不断分化,不断综合的趋势都在加强。(2)电子计算机进入数学领域,产生巨大而深远的影响。(3)数学渗透到几乎所有的科学领域,并且起着越来越大的作用,纯粹数学不断向纵深发展,数理逻辑和数学基础已经成为整个数学大厦基础。

❹ 汇编语言是一种什么语言

汇编语言是任何一种用于电子计算机、微处理器、微控制器或其他可编程器件的低级语言,亦称为符号语言。在汇编语言中,用助记符代替机器指令的操作码,用地址符号或标号代替指令或操作数的地址。在不同的设备中,汇编语言对应着不同的机器语言指令集,通过汇编过程转换成机器指令。特定的汇编语言和特定的机器语言指令集是一一对应的,不同平台之间不可直接移植。

(4)数学汇编被认为是什么扩展阅读:

自从1946年世界上第一台电子计算机问世,人类和机器的交流方式和语言就成为了软件工程师和计算机从业者的主要研究方向,更有效更简便的编程语言成为了软件工程师的新宠儿,伴随着计算机的飞速发展,计算机的硬件升级速度也越来越快,对编程语言的要求也日益严格。

在过去的几十年,编程语言有了长足的发展,至今已经有四代语言问世。大量的编程语言为了满足不同领域的编程要求和软件功能,经历 了被修改,被取代,被发展等过程,最终发展成了现在编程语言的多样化。尽管人们多次试图寻找一个能够适应所有编程环境的通用语言,但 是却没有一次成功。程序设计语言正在与现代科技日益飞跃,人类的智慧在日益彰显。

❺ 数学的圆周率是什么呢

圆周率即圆的周长与其直径的比。通常用π来表示。
公元前1650年,埃及人着的兰德纸草书中提出π=(4/3) 3=3.1604.但是对π的第一次科学的尝试应归功于阿基米德。
阿基米德计算π值是采用内接和外切正多边形的方法。数学上一般把它称为计算机的古典方法。
在公元前3世纪,古希腊的数学非常发达,为了使得数学计算简便,人们选一个以长度为直径的圆。这样圆的周长在任何内接正多边形的周长和任何外切正多边形的周长之间。这样就容易得到π的上下界,因为计算内接和外切正多边形的财长比较简单。阿基米德也掌握了这一原理。他从内接和外切严六边形开始,按照这个方法逐次进行下去,就得出12、24、38、96边的内拉和外切正多边形的财长,他利用这一方法最后得到π值在223/71,22/7之间,取值为3.14。这一方法和数值发表在他的论文集》圆的量度中。
公元150年,希腊数学家托勒玫着有《数学汇编》一书。在这本书中,他认为π377/120后者取值为3.1416。他的这一计算结果是由弦表扒出来的。在他的弦表中给出了圆心角(每个角间隔一度和半度)所对的圆的弦长。如果把1度圆心角所对的弦长乘以260,再用圆的直径除它,就得到π值。
其实,我国古代的数学名着《九间算术》中,就有了π的应用,求圆田面积的公式为S=3/4D 2orS=1/12p 2其中D为直径,P为圆周长。公元130年前,东汉天文学家张衡计算的π值达到3.1622,即√10,他是世界上第一个采用π=√10的人。到了公元3世纪,三国时期着名的天文学家、数学家王蕃取π=142/45或3.1555。
我国古代第一个把扒求圆周率近似值的方法提高到理论高度上来认识的是刘微。他独立地创造了“割圆术”,并系统而严密地用内接正多边形来求得圆周率的近似值,他从内接正六边形算起,计算到圆内接正192边形的面积,从而得出3.14<π<3.142704这一值,后来他沿着这一思路继续前进,一地算到圆内接正3072边形时,得到了π=3927/1250,π的值给为3.14159。这是当时得到的最精确的取值。
南北朝时期,我国的大数学家祖冲之采用刘徽的割圆术,一直扒算到圆内接正24576边形,从而推得:
3.1415926<π<3.1415927
这一成果记载在他的着作《缀术》中。可惜的是,这本书已经失传。为了应用方便,祖冲之对圆周率还给出了两个分数值355/113和22/7,前者称之为“密率”,后者称之为“给率”。其中“密率”355/133是一个很有趣的数字,分母分子恰好是三个最小奇数的重复,既整齐美观、又便于记忆。355/113=3+4 2/(7 2+8 2)也是很巧妙的组合。它与π的实际值相对误差只有9/10^8。
π的这个最佳分数值,欧洲人通常认为是芬兰人安托尼斯首先发现的,所以他们称之为“安托尼斯率”。其实德国数学家奥托在公元1573年已得密率的时间在公元462年以前,这比奥托要早1100多年。为纪念祖冲之对圆周率所的贡献,日本数学史家三上义夫在<中日数学发展史>中建议把π=355/113叫作“祖率”,这种叫法在解放后已通行于中国。
π的更精确的值,一直到公元15世纪,才由伊朗天文学家卡西于1420年求得,把π的精确值计算到小数点后8位。
1579年,着名的法国数学家韦达根据古典方法,用圆内接正393216边形,求得π的值,精确到小数点后9位。
1593年,芬兰人罗梅根据古典方法,把π精确到小数点后15位。
1610年,德国数学家科煞伦根据古典方法,把π精确到小数点后35位。但是他把一生的大部分时间都花在了这项工作上。
到了1621年,荷兰物理学家斯涅留斯把计算π的古典方法加以改进,只要用230边形就可以求得小数点后35位。

❻ 帕普斯的着作

公元4世纪,希腊数学已成强弩之末。‘黄金时代’﹝300 B.C─200 B.C﹞几何巨匠已逝去五、六百年,公元前146年亚历山大被罗马人占领,学者们虽然仍能继续研究,然而已没有他们的先辈那种气势雄伟、一往无前的创作精迪。公元后,兴趣转向天文的应用,除门纳劳斯﹝Menelaus of Alexandria公元100前后﹞、托勒密﹝Claudius Ptolemy,约公元85-165﹞在三角学方面有所建树外,理论几何的活力逐渐凋萎。此时亚历山大的帕波斯(Pappus of Alexandria)正努力总结数百年来前人披荆斩棘所取得的成果,以免年久失传。
帕普斯给欧几里得《几何原本》和《数据》以及托勒密的《大汇编》和《球极平面投影》作过注释。写成八卷的《数学汇编》﹝Synagoge或Mathematical Collection﹞──对他那个时代存在的几何着作的综述评论和指南,其中包括帕普斯自己的创作。但第一卷和第二卷的一部份已遗失,许多古代的学术成果,由于有了这部书的存录,才能让后世人得知。例如芝诺多努斯的《等周论》,经过帕普斯的加工,被编入于第五卷之中。当中有关于‘圆面积大于任何同周长正多边形的面积’、‘球的体积大于表面积相同的圆锥、圆柱’、‘表面积相同的正多面体,面积愈多体积愈大’等命题。对于希腊几何三大问题也作了历史的回顾,并给出几种用二次或高次曲线的解法。在第七卷中则探讨了三种圆锥曲线的焦点和准线的性质,还讨论了‘不面图形绕一轴旋转所产生立体的体积’,后来这叫做‘古尔丁定理’,因为后者曾重新加以研究。
《数学汇编》引用和参考了三十多位古代数学家的着作,传播了大批原始命题及其进展、扩展和历史注释。由于许多原着已经散失,《数学汇编》便成为了解这些着作的唯一源泉,是名副其实的几何宝库。

❼ 帕波斯问题

帕波斯是亚历山大晚期的数学家.确定他的生活年代,主要的依据是他在注释托勒密的书时提到他最近曾目睹一次日食.经考证,这次日食应发生在公元320年10月18日另外,赛翁(Theon of Alexandria,公元390年前后)编写的一份年代表,手稿现藏在莱顿,旁边有注释者的字迹.对着戴克里先(Diocletian,罗马皇帝,公元284—305年在位)的名字写道:“此时帕波斯写作”.这和前面的日食年代出入不大,可能在戴克里先时代他还年青,刚开始写作.
帕波斯有不少着作,唯一流传下来的正是最有价值的一种:《数学汇编》(Mathematical collection),简称《汇编》(Collection,或Synagoge),synagoge的希腊原文是συναγωγ,是收集,汇集的意思.《汇编》在历史上占有特殊的地位,这不仅仅是它本身有许多发明创造,更重要的是记述了大量前人的工作,保存了一大批现在在别处无法看到的着作.它和普罗克洛斯的《概要》是研究希腊数学史的两大原始资料.
《汇编》原有8卷,卷Ⅰ和卷Ⅱ的前一部分已失传.各卷写于不同的年代,完成全书应在公元320年或340年之后.
目前唯一完善的版本是F.胡尔奇(Hultsch)校订并翻译的希腊文与拉丁文对照本,包括非常宝贵的导言、注解和附录.唯一全部译成现代语的有P.V.埃克(Eecke)的法文译本.选择其中一部分译出的则较多,而最早的拉丁文译本是F.科曼迪诺(Commandino,1509—1575)作出的(1566),只是一部分.以后在17,18世纪及近代又有多种摘要译本.
公元4世纪,希腊数学已成强弩之末.“黄金时代”(公元前300—200)几何巨匠已离去五、六百年,公元前146年亚历山大被罗马人占领,学者们虽然仍能继续研究,然而已没有他们的先辈那种气势雄伟、一往无前的创作精神.公元后,兴趣转向天文的应用,除门纳劳斯、托勒密在三角学方面有所建树之外,理论几何的活力逐渐凋萎.在此情况之下,总结数百年来前人披荆斩棘所取得的成果,以免年久失传,确是十分必要的.这项任务由帕波斯来完成. 后来就这样叫了

❽ 帕普斯的《数学汇编》

《数学汇编》共有8篇:第1篇为算术;第2篇提出了连乘法;第3篇关于平面几何与立体几何,其中有寻找两条以知线段的比例中项问题,有关于算术平均、几何平均和调和平均以及把三者表示在一个几何图形上的问题,并揭示了如何把正五面体内接于一个球内;第4篇有关于3个以知圆彼此外切问题,还详细讨论了阿基米德螺线、尼科梅德蚌线及希波克拉提斯割圆曲线问题等,并涉及任何角的三等分问题;第5篇是关于面积和体积问题;第6篇是对先前的天文学家和数学家的着作的评注;第7篇阐述了术语分析和综合以及定理和问题之间的区别;第8篇主要是关于力学。
可惜,《数学汇编》中的一些篇章也已经散佚。此外,巴普士还有注释托勒玫、欧几里得等人着作的其他着述。

❾ 中西方数学发展史上有什么不同的特点

看这篇论文
中西方古代数学是两个完全不同体系,中国古代数学偏向构造性与机械性的算法体系,而以古希腊为代表的西方数学则侧重于逻辑演绎体系。
古代希腊的数学,自公元前600年左右开始,到公元641年为止共持续了近1300年。前期始于公元前600年,终于公元前336年希腊被并入马其顿帝国,活动范围主要集中在驱典附近;后期则起自亚历山大大帝时期,活动地点在亚历山大利亚;公元641年亚历山大城被阿拉伯人占领,古希腊文明时代宣告终结。 而中国数学起源于遥远的石器时代,经历了先秦萌芽时期(从远古到公元前200年);汉唐始创时期(公元前200年到公元1000年),元宋鼎盛时期(公元1000年到14世纪初),明清西学输入时期(十四世纪初到1919年)。
一、最早的有关数学的记载的比较
最早的希腊数学记载是拜占庭的希腊文的手抄本(可能做了若干修改),是在希腊原着写成后500年到1500年之间录写的。其原因是希腊的原文手稿没有保存下来。而成书最早的是帕普斯公元三世纪撰写的《数学汇编》和普罗克拉斯(公元5世纪)的《欧德姆斯概要》。《欧德姆斯概要》一书是以欧德姆斯写的一部着作(一部相当完整的包括公元前335年之前的希腊几何学历史概略,但已经丢失)为基础的。
中国最早的数学专着有《杜忠算术》和《许商算术》(由《汉书·艺文志》记载可知),但这两部着作都已失传。《算术书》是目前可以见到的中国最早的,也是一部比较完整的数学专着。这部着作于1984年1月,在湖北江陵张家山出土大批竹简中发现的,据有关专家认定《算术书》抄写于西汉初年(约公元前2世纪),成书时间应该更早,大约在战国时期。《算术书》采用问题集形式,共有60多个小标题,90多个题目,包括整数和分数四则运算、比例问题、面积和体积问题等。
结论:中国是四大文明古国之一,所有的文化创造,均源自华夏大地。一般来讲,中国的数学成果较古希腊为迟。
二、经典之作的比较 古希腊数学的经典之作是欧几里得的名着《几何原本》。亚历山大前期大数学家欧几里得完成了具有划时代意义工作——把以实验和观察而建立起来的经验科学,过渡为演绎的科学,把逻辑证明系统地引入数学中,欧几里得在《几何原本》中所采用公理、定理都是经过细致斟酌、筛选而成,并按照严谨的科学体系进行内容的编排,使之系统化、理论化,

超过他以前的所有着作。《几何原本》分十三篇.含有467个命题。 《几何原本》对世界数学的贡献主要是:
1. 建立了公理体系,明确提出所用的公理、公设和定义。由浅入深地揭示一系列定理,使得用一小批公理证出几百个定理。
2. 把逻辑证明系统地引入数学中,强调逻辑证明是确立数学命题真实性的一个基本方法。 3. 示范地规定了几何证明的方法:分析法、综合法及归谬法。
《几何原本》精辟地总结了人类长时期积累的数学成就,建工了数学的科学体系。为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机。二千年来,一直被公认为初等数学的基础教材。
而中国的经典之作是《九章算术》。不同的是,《九章算术》并不是一人一时写成的,它经历了多次的整理、删补和修订,是几代人共同劳动的结晶。大约成书于东汉初年(公元一世纪)。《九章算术》采用问题集形式.全书分为九章,例举了246个数学问题,并在若干问题之后,叙述这类问题的解题方法。 《九章算术》对世界数学的贡献主要有: 1. 开方术,反应了中国数学的高超计算水平,显示中国独有的算法体系。
2. 方程理论,多元联立一次方程组的出现,相当于高斯消去法的总结,独步于世界。 3. 负数的引入,特别是正负数加减法则的确立,是一项了不起的贡献。
刘徽公元263年注《九章算术》,主要贡献是整理此前的中国古代数学成就,并用自己的理解加以评述,特别是一些数学方法的提炼,达到中国数学的高峰。
《九章算术》系统地总结了西周至秦汉时期我国数学的重大成就,是中国数学体系形成的重要标志,其内容丰富多彩,反映了我国古代高度发展的数学。《九章算术》对中国数学发展的影响,可与欧几里得《几何原本》对西方数学的影响一样,是非常深远的。 结论:《九章算术》和《几何原本》同为世界最重要的数学经典。《九章算术》以其实用、算法性称誉世界,《几何原本》以其逻辑演绎的思想方法风靡整个科学界。二者是互相补充的,并非一个掩盖另一个。
三.古希腊数学与中国数学特点的比较
古希腊数学的特点如下:
1.希腊人将数学抽象化,使之成为一种科学.具有不可估量的意义和价值。希腊人坚持使用演绎证明,认识到只有用勿容置疑的演绎推理法才能获得真理。要获得真理就必须从真理出发,不能把靠不住的事实当作己知。从《几何原本》中的10个公理出发,可以得到相当多的定理和命题。
2.希腊人在数学内容方面的贡献主要是创立平面几何、立体几何、平面与球面三角、数论,推广了算术和代数,但只是初步的,尚有不足乃至错误;
3.希腊人重视数学在美学上的意义,认为数学是一种美,是和谐、简单、明确以及有秩序的艺术;
4.希腊人认为在数学中可以看到关于宇宙结构和设计的最终真理,使数学与自然界紧密联系起来,并认为宇宙是按数学规律设计的,并且能被人们所认识的。
中国数学的特点如下:
1.中国数学最基本的特点是具有鲜明的社会性。通观中国古典数学着作的内容,几乎都与当时社会生活的实际需要有着密切的联系。从《九章算术》开始,中国算学经典基本上都遵从问题集解的体例编纂而成,其内容反映了当时社会政治、经济、军事、文化等方面的某些实际需要,具有浓厚的应用数学的色彩;
2.中国数学教育与研究始终置于政府的控制之下,以适应统治阶级的需要;
3.中国数学家的数学论着深受历史上各种社会思潮、哲学流派以至宗教神学的影响,具有形形色色的社会痕迹。
4.中国数学是以几何方法和代数方法的相互渗透表现为形数结合的,是用算筹来计算的.并采用了十进位制。同时,用一整套”程序语言”来揭示计算方法,而演算程序简捷而巧妙。 5.中国数学理论表现为运算过程之中,即“寓理于算”。中国数学家善于从错综复杂的数学现象中抽象出深刻的数学概念,提炼出一般的数学原理,作为研究众多数学问题的基础。
结论:古希腊数学属于公理化演绎体系,着眼于”理”——首先给出公理、公设、定义,尔后在此基础上有条不紊地、由简到繁地进行一系列定理的证明;中国数学属于机械化算法体系;着眼于”算”——把问题分门别类,然后用一个固定的方程式解决一类问题的计算。

❿ 希腊数学的兴衰原因

数学历史故事之古希腊数学的兴衰。我们都知道古希腊是西方文明的源头之一,这个文明国度有着众多杰出优秀的人才,至今被人们纪念着。比如阿基米德、毕达哥拉斯、欧几里得、泰勒斯等等,今天极客数学帮就来和大家探讨古希腊历史中数学的兴衰过程,一起来看看吧。

一、兴起

原因:

希腊数学的兴起正是在雅典时期,该时期人们在学术上的辩论风气较浓,唯理论的学术风气很盛,另外,人们信奉多种宗教,思想自由,可以充分发挥想象力,有助于科学和数学从宗教的神学中分离出来,所以一时学派林立,百花齐放,出现了泰勒斯为代表的伊奥尼亚学派以及毕达哥拉斯学派和其他学派。

特点:从初始概念和公理出发,诞生了演绎体系的论证数学(或几何),故从研究思想方法看,希腊人重于理论,善于使用形式逻辑,后来的《几何原本》为典型代表。

1、泰勒斯学派(伊奥尼亚学派)

泰勒斯在数学方面划时代的贡献是引入了命题证明的思想。它标志着人们对客观事物的认识从经验上升到理论,这在数学史上是一次不寻常的飞跃。在数学中引入逻辑证明,它的重要意义在于:保证了命题的正确性;揭示各定理之间的内在联系,使数学构成一个严密的体系,为进一步发展打下基础;使数学命题具有充分的说服力,令人深信不疑。

伊奥尼亚学派的着名学者还有阿纳克西曼德和阿纳克西米尼等。他们对后来的毕达哥拉斯有很大的影响。

2、毕达哥拉斯学派

毕达哥拉斯,是论证数学的另一位创始人。该学派企图用数来解释一切,不仅仅认为万物都包含数,而且说万物都是数。他们以发现勾股定理(西方叫做毕达哥拉斯定理)闻名于世,又由此导致不可通约量的发现。这个学派有一个特点,就是将算术和几何紧密联系起来。

然而由于之后的“无理数”的发现,动摇了毕氏学派的“万物皆数”的哲学基础,从而发生了数学史上的发现无理数惨案,并由此产生了第一次数学危机。

第一次数学危机告诉我们推理和证明才是可靠的,从此希腊开始从“自明的”公理出发,经过演绎推理建立了几何体系,并坚持合乎逻辑的演绎推理,建立完备的公理体系,使数学成为一门抽象的演绎性的科学,为现代科学奠定了基础。

3、其他学派

希腊学派林立,分别有以芝诺为代表的埃利亚学派,他研究了物质世界的连续性、运动性和无限性等性质,并创造了“辨证术”;

以德谟克利特为代表的原子论学派,提出“物质世界是由大量不可分割的原子所组成”的观点,并由此观点计算出某些图形的面积和体积;

以柏拉图为代表的柏拉图学派特别推崇几何,主要研究无理数理论、正多面体和圆锥曲线等;

以亚里士多德为代表的亚里士多德学派讨论过数学的一些基本原理,成员欧德莫斯写过的《算术史》、《几何学史》、《天文学史》成为最早科学史的先驱。

这些学派在数学上的贡献主要有:几何三大作图问题,分别是倍立方体、化圆为方和三等分角,此时还产生圆锥曲线论及三次、四次代数曲线等数学分支。还有早期的无限概念。亚里斯多德是形式逻辑的奠基人,着名的“三段论”的创始人。为欧几里得演绎几何体系的形成奠定了方法论的基础。

二、全盛

特 点:亚历山大时期是古希腊数学的全盛时期,该时期的特点是几何脱离哲学而独立成为真正的演绎科学,公理化方法在几何中取得相当不错的成就,代数也取得一些成就,希腊数学达到高峰,杰出的数学家有欧几里得、阿基米德、阿波罗尼奥斯。

1、欧几里得

欧几里得的《几何原本》它是古希腊数学成果、思想、方法和精神的结晶。是整个科学史上发行最广使用时间最长的书,成为数学的“圣经”。其伟大的历史意义在于它是用公理法建立起演绎体系的最早典范。

2、数学之神阿基米德

阿基米德是物理学家兼数学家,他善于将抽象的理论和工程技术的具体应用结合起来,又在实践中洞察事物的本质,通过严格的论证,使经验事实上升为理论。

3、阿波罗尼奥斯

其主要贡献是对圆锥曲线进行了深入研究,完成了传世着作《圆锥曲线论》,并且他的圆锥曲线的切线问题成为微积分发展的动力之一,对17世纪数学发展起了重要作用。

欧几里得、阿基米德和阿波罗尼奥斯的成就,标志着希腊几何学的顶峰,他们凭着有限的技巧,已经得到使用这些技巧所得到的绝大多数成果。

三、衰落

特 点:亚历山大后期是古希腊数学的衰落时期。这时期特点是,几何学主要是在《几何原本》等着作的基础上做增补工作在代数与三角学方面成就大一些。着名数学家有海伦、托勒密、梅内劳斯、塞瓦、丢番图、帕普斯和希帕蒂娅。

海伦的主要贡献是在《度量论》中给出三角形面积计算公式;

托勒密定理常选编在古今几何学课内外书中,用法甚广;

希腊数学家丢番图将符号引入代数,对不定方程作了广泛、深入的研究,使算术和代数成为独立的学科,被称为“代数学之父”;

帕波斯的《数学汇编》是古希腊数学的安魂曲;

希帕蒂娅注释了丢番图的《算术》、阿波罗尼奥斯的《圆锥曲线论》,是历史上第一位女数学家,可由于其不信奉基督教,惨遭杀害,她的死也标志着希腊数学的衰落。

希腊人的数学追求源于他们对自然的探索和追求,他们深深懂得数学是了解宇宙的钥匙,数学规律是宇宙布局的精髓。希腊人借助猜想,重视抽象,不太考虑具体实际。比如选择一些富有想象力且又易为人们所接受的定义、公设、公理,通过典型证明推广到一般,大大推进了数学科学的结构完善和学科发展。

尽管希腊数学成就颇多,其也是存在缺点和局限性的,从各学派研究数学方面的特点来看,可总结出如下几点局限性:

第一个局限性是,不能掌握无理数的概念,消极逃避:

他们不能掌握无理数,对其心存疑惧,消极逃避,还发生了数学史上的无理数惨案。这也迷糊了后世好几代人的视野。

第二个局限性是,过于重视几何,而偏废了算术和代数:

与第一个局限性紧密相关,希腊人不能掌握无理数的概念,从而使他们转向更加强调几何,专注于几何,因为几何思想可以让他们免于明确碰到无理数是否为数这个问题。这必定限制了算术和代数的发展。

总括而言,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富,不论从数量还是从质量来衡量,都是世界上首屈一指的。比希腊数学家取得具体成果更重要的是:希腊数学产生了数学精神,即数学证明的演绎推理方法。数学的抽象化以及自然界依数学方式设计的信念,为数学乃至科学的发展起了至关重要的作用。而由这一精神所产生的理性、确定性、永恒的不可抗拒的规律性等一系列思想,则在人类文化发展史上占据了重要的地位。

以上就是极客数学帮整理的有关于数学历史故事:古希腊数学的兴衰的全部内容了。

阅读全文

与数学汇编被认为是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:743
乙酸乙酯化学式怎么算 浏览:1408
沈阳初中的数学是什么版本的 浏览:1358
华为手机家人共享如何查看地理位置 浏览:1049
一氧化碳还原氧化铝化学方程式怎么配平 浏览:890
数学c什么意思是什么意思是什么 浏览:1416
中考初中地理如何补 浏览:1307
360浏览器历史在哪里下载迅雷下载 浏览:706
数学奥数卡怎么办 浏览:1396
如何回答地理是什么 浏览:1030
win7如何删除电脑文件浏览历史 浏览:1060
大学物理实验干什么用的到 浏览:1490
二年级上册数学框框怎么填 浏览:1708
西安瑞禧生物科技有限公司怎么样 浏览:988
武大的分析化学怎么样 浏览:1252
ige电化学发光偏高怎么办 浏览:1341
学而思初中英语和语文怎么样 浏览:1660
下列哪个水飞蓟素化学结构 浏览:1427
化学理学哪些专业好 浏览:1490
数学中的棱的意思是什么 浏览:1066