A. 奇数有哪些
奇数(odd)指不能被2整除的整数 ,数学表达形式为:2k+1, 奇数可以分为正奇数和负奇数。
在整数中,不能被2整除的数叫做奇数。日常生活中,人们通常把正奇数叫做单数,它跟偶数是相对的。奇数可以分为正奇数和负奇数。奇数的数学表达形式为:
正奇数:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33
负奇数:-1、-3、-5、-7、-9、-11、-13、-15、-17、-19、-21、-23.-25、-27、-29、-31、-33
B. 一百以内的奇数有哪些
一百以内的奇数有:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99。
奇数(odd)指不能被2整除的整数,数学表达形式为:2k+1,奇数可以分为正奇数和负奇数。奇数跟偶数是相对的。
偶数是能够被2所整除的整数。正偶数也称双数。若某数是2的倍数,就是偶数,可表示为2n;若非,就是奇数,可表示为2n+1(n为整数),即奇数除以二的余数是一。
0是一个特殊的偶数。既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。
C. 小学数学问题:什么叫奇数、偶数、质数、合数
1、奇数:不能被2整除的数是奇数。如9是奇数。
正奇数:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33.........
负奇数:-1、-3、-5、-7、-9、-11、-13、-15、-17、-19、-21、-23.-25、-27、-29、-31、-33.........
2、偶数:能被2整除的数是偶数。如4是偶数。
在十进制里,可以看个位数判定该数是奇数(单数)还是偶数(双数):个位为1,3,5,7,9的数是奇数(单数);个位为0,2,4,6,8的数是偶数(双数)。
3、合数:能分解成两个数(除去1之外)相乘的数是合数。如6是合数。
100以内的合数是:
4、6、8、9、10、12、14、15、16、18、20、21、22、24、25、26、27、28、30、32、33、34、35、36、38、39、40、42、44、45、46、48、49、50、51、52、54、55、56、57、58、60、62、63、64、65、66、68、69、70、72、74、75、76、77、78、80、81、82、84、85、86、87、88、90、91、92、93、94、95、96、98、99、100
4、质数:除去1外,只能被自己和1整除的数是质数。如7是质数。
100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,一共有25个。
(3)数学题奇数有哪些扩展阅读:
1、奇数和偶数的相关性质:
(1)两个连续整数中必有一个奇数和一个偶数;
(2)奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数;
(3)奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数;
(4)若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数;
(5)n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数;
(6)奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8;
(7)奇数的平方除以2、4、8余1;
(8) 任意两个奇数的平方差是2、4、8的倍数
(9)奇数除以2余数为1
2、合数的性质:
(1)所有大于2的偶数都是合数。
(2)所有大于5的奇数中,个位为5的都是合数。
(3)除0以外,所有个位为0的自然数都是合数。
(4)所有个位为4,6,8的自然数都是合数。
(5)最小的(偶)合数为4,最小的奇合数为9。
(6)每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
(7)对任一大于5的合数(威尔逊定理):
3、质数的性质:
质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,
要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
D. 奇数和偶数分别是哪些数字
现代数学:奇数亦称单数,是一类重要的数,即不能被2整除的整数。奇数常表示为2n+1或2n-1,其中n是整数。偶数亦称双数,是一类重要的数,即能被2整除的整数。偶数常表示为2n,其中n是整数。偶数的和、差、积都是偶数。
小学数学:2004年北京版教材第10册第51页提出:能被2整除的数叫作偶数;不能被2整除的数叫作奇数。2013年人教版教材五年级下册第12页提出:自然数中,是2的倍数的数叫作偶数(0也是偶数),不是2的倍数的数叫作奇数。
二.概念解读
在自然数中,不是奇数(又称单数),就是偶数(又称双数)。一般来说,偶数表示为2n;奇数表示为2n+1,n为整数。
为了国际交流的方便,1993年颁布的《中华人民共和国国家标准》《量和单位》的第311页规定:自然数包括0。这样0也自然成为偶数。0是一个个特殊的偶数。
小学规定0为最小的偶数,1是最小的奇数。但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了。像-2, -4, -6,-8,-10,-12等都是负偶数;出现了负奇数时,1也就不是最小的奇数了。像-1,-3,-5, -7,-9, -11等都是负奇数。
偶数包括正偶数、负偶数和0。奇数包括正奇数和负奇数。
在十进制里,可以用看个位数的方式判定该数是奇数还是偶数:个位为1、3、5.7、9的数是奇数;个位为0、2、4、6、8的数是偶数。
关于奇数和偶数有如下一些性质:
①两个连续整数中必有一个是奇数,一个是偶数。
②两个整数和的奇偶性---奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数。一般地,奇数个奇数的和是奇数,偶数个奇数的和是偶数,任意个偶数的和为偶数。
③两个整数差的奇偶性---奇数-奇数=偶数,奇数-偶数=奇数,偶数-偶数=偶数,偶数-奇数=奇数。
④两个整数积的奇偶性---奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。一般地,在整数连乘当中,只要有一个因数是偶数,那么其积必为偶数;如果所有因数都是奇数,那么其积必为奇数。
⑤两个整数商的奇偶性---在能整除的情况下,偶数除以奇数得偶数,偶数除以偶数可能得奇数,也可能得偶数,奇数不能被偶数整除。
⑥若a、b为整数,则a+b与a-b有相同的奇偶性。
⑦除2以外,所有的正偶数均为合数。
⑧相邻两个整数的和是奇数,相邻两个整数的积是偶数。
⑨如果一个整数有奇数个约数,那么这个数一定是完全平方数(像1、4、9、16、25等都是完全平方数)。如果一个数有偶数个约数,那么这个数一定不是完全平方数。
⑩着名数学家毕达哥拉斯发现有趣的奇数现象:将奇数连续相加,每次的得数正好是平方数。如:
1+3= 2平方2
1+3+5= 3平方2
1+3+5+7 =4平方2
1+3+5+7+9=5平方2
1+3+5+7+9+11= 6平方2
1+3+5+7+9+11+13=7平方2
1+3+5+7+9+11+13+15 = 8平方2
1+3+5+7+9+11+13+15+17=9平方2
四.教学建议
①奇数和偶数的内容,教材安排在“2的倍数的特征”这个内容里。教学中,多数教师都是把奇数和偶数与“2的倍数的特征”的内容安排在一节课完成。
我们知道,学生对奇数和偶数并不陌生,他们早在一年级时就已认识了单数和双数,有些学生还发现了单数和双数个位上数的特征。因此,学生掌握奇数和偶数的概念应该说是很轻松的。
②有些教师把奇数和偶数的内容单独安排一节课,重点让学生运用奇数和偶数的特点解决一些问题,感受奇数和偶数的一些性质。比如让学生排成一队进行1、2连续报数,第一个人报1,第二个人报2,第三个人报1,第四个人报2 ......如果这样一直报下去,第15个人报几?第24个人报几呢?再比如有一个杯子,杯口朝上,如果翻动一次杯子杯口朝下,翻动两次杯子杯口朝上,这样连续地做下去,翻动第10次时,杯口是朝上还是朝下?翻动第15次呢?
这样使学生感受到奇数和偶数的性质能帮助我们很快地解决问题,同时意识到学习奇数和偶数,了解它们的一些性质是很有必要的。
E. 奇数有哪些
正奇数有:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33.........
负奇数有:-1、-3、-5、-7、-9、-11、-13、-15、-17、-19、-21、-23.-25、-27、-29、-31、-33.........
日常生活中,人们通常把正奇数叫做单数,它跟偶数是相对的。奇数可以分为正奇数和负奇数。着名数学家毕达哥拉斯发现有趣奇数现象:将奇数连续相加,每次的得数正好是平方数。这体现在奇数和平方数之间有着密切的重要联系。
(5)数学题奇数有哪些扩展阅读
关于奇数和偶数,有下面的性质:
(1)两个连续整数中必有一个奇数和一个偶数;
(2)奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数;
(3)奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数;
(4)若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数;
(5)n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数;
(6)奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8;
(7)奇数的平方除以2、4、8余1;
(8) 任意两个奇数的平方差是2、4、8的倍数;
(9)奇数除以2余数为1。
F. 奇数都有哪些
奇数的数学表达形式为:
正奇数:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33......
负奇数:-1、-3、-5、-7、-9、-11、-13、-15、-17、-19、-21、-23.-25、-27、-29、-31、-33......
G. 奇数有哪些
有1,3,5,7,9,11,13,15,17,19……
整数中,能被2整除的数是偶数,不能被2整除的数是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数。
特别提示:奇数包括正奇数、负奇数。
关于奇数和偶数,有下面的性质:
(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数。
(2)奇数跟奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数。
(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数。
(4)若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。
(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数,即:A*B*C*…*偶数*X*Y=偶数,式中A、B、C、…X、Y皆为整数,公式可简化为:奇数*偶数=偶数。
(6) 奇数的个位是0、5;偶数的个位是0、2、4、6、8.(0是个特殊的偶数。2002年国际数学协会规定,零为偶数.我国2004年也规定零为偶数。小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了.)
H. 一百以内所有奇数和偶数有哪些
100以内的奇数:
1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99
100以内的偶数:
2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、62、64、66、68、70、72、74、76、78、80、82、84、86、88、90、92、94、96、98。
为奇数列。
I. 1~100的奇数有那些
一百以内的奇数有:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47、49、51、53、55、57、59、61、63、65、67、69、71、73、75、77、79、81、83、85、87、89、91、93、95、97、99。