❶ 数学导数中那个e是怎么得来的
e是一个无理数,也是一个超越数,由欧拉(Leonhard Euler)在1727年首先引进的.他在高等数学中,起着一个极其重要的作用.
e=1+1/1!+1/2!+1/3!+....+1/(n-1)!+.....
他是一个符号,而并非是由定义生成.
当然,当n趋向于无穷大时,(1+1/n)^n的极限也等于e.
❷ 数学中e的值是怎么算出来的
称“自然对数”又称“双曲对数”.以超越数 e=1+11!+12!+13!+…=2.71828… 为底的对数.用记号“ln”表示.有自然对数表可查.
当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的.
它是个无限不循环小数.其值约等于2.718281828... 它用e表示 以e为底数的对数通常用于㏑ 而且e还是一个超越数 e在科学技术中用得非常多,一般不使用以10为底数的对数.以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”. 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底.为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”.因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数.
❸ 数学中的e这个数字是怎样来的
希望能帮到你。
这就要从古早时候说起了。至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随着微积分诞生的。那么是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。
我们都知道复利计息是怎么回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高。有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什么状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近于一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e)。所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。
包罗万象的e
读者恐怕已经在想,光是计算利息,应该不至于能讲一整本书吧?当然不,利息只是极小的一部分。令人惊讶的是,这个与计算复利关系密切的数,居然和数学领域不同分支中的许多问题都有关联。在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能。问题虽然都不一样,答案却都殊途同归地指向e这个数。比如其中一个有名的问题,就是求双曲线y=1/x底下的面积。双曲线和计算复利会有什么关系,不管横看、竖看、坐着想、躺着想,都想不出一个所以然对不对?可是这个面积算出来,却和e有很密切的关联。我才举了一个例子而已,这本书里提到得更多。
如果整本书光是在讲数学,还说成是说故事,就未免太不好意思了。事实上是,作者在探讨数学的同时,穿插了许多有趣的相关故事。比如说你知道第一个对数表是谁发明的吗?是纳皮尔(John
Napier)。没有听说过?这很正常,我也是读到这本书才认识他的。重要的是要下一个问题。你知道纳皮尔花了多少时间来建构整个对数表吗?请注意这是发生在十六世纪末、十七世纪初的事情,别说电脑和计算机了,根本是什么计算工具也没有,所有的计算,只能利用纸笔一项一项慢慢地算,而又还不能利用对数来化乘除为加减,好简化计算。因此纳皮尔整整花了二十年的时间建立他的对数表,简直是匪夷所思吧!试着想象一下二十年之间,每天都在重复做同类型的繁琐计算,这种乏味的日子绝不是一般人能忍受的。但纳皮尔熬过来了,而他的辛苦也得到了报偿——对数受到了热切的欢迎,许多欧洲甚至中国的科学家都迅速采用,连纳皮尔也得到了来自世界各地的赞誉。最早使用对数的人当中,包括了大名鼎鼎的天文学家刻卜勒,他利用对数,简化了行星轨道的繁复计算。
在《毛起来说e》中,还有许多我们在一般数学课本里读不到的有趣事实。比如第一本微积分教科书是谁写的呢?(假如你曾受微积分课程之苦,也会想知道谁是“始作俑者”吧?”)是罗必达先生。对啦,就是罗必达法则(L'Hospital's
Rule)的那位罗必达。但是罗必达法则反倒是约翰.伯努利先发现的。不过这无关乎剽窃的问题,他们之间是有协议的。
说到伯努利可就有故事说了,这个家族实在不得了,别的家族出一位天才就可以偷笑了,而他们家族的天才是用“量产”形容。伯努利们前前后后在数学领域中活跃了一百年,他们的诸多成就(不仅止于数学领域),就算随便列一列,也有一本书这么厚。不过这个家族另外擅长的一件事就不太敢恭维了,那就是吵架。自家人吵不够,也跟外面的人吵(可说是“表里如一”)。连爸爸与儿子合得一个大奖,爸爸还非常不满意,觉得应该由自己独得,居然气得把儿子赶出家门;和现代的许多“孝子”们比起来,这位爸爸真该感到惭愧。
e的“影响力”其实还不限于数学领域。大自然中太阳花的种子排列、鹦鹉螺壳上的花纹都呈现螺线的形状,而螺线的方程式,是要用e来定义的。建构音阶也要用到e,而如果把一条链子两端固定,松松垂下,它呈现的形状若用数学式子表示的话,也需要用到e。这些与计算利率或者双曲线面积八竿子打不着的问题,居然统统和e有关,岂不奇妙?
❹ 自然数“e”是如何来的
e是自然对数的底数,是一个无限不循环小数,其值是2.71828……,是这样定义的:
当n->∞时,(1+1/n)^n的极限。
注:x^y表示x的y次方。
随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000。但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了。
e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。
❺ 数学中e的值是怎么算出来的
称“自然对数”又称“双曲对数”.以超越数 e=1+11!+12!+13!+…=2.71828… 为底的对数.用记号“ln”表示.有自然对数表可查. 当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的.它是个无限不循环小数.其值约等于2.718281828... 它用e表示 以e为底数的对数通常用于㏑ 而且e还是一个超越数 e在科学技术中用得非常多,一般不使用以10为底数的对数.以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”. 涡形或螺线型是自然事物极为普遍的存在形式,比如:一缕袅袅升上蓝天的炊烟,一朵碧湖中轻轻荡开的涟漪,数只缓缓攀援在篱笆上的蜗牛和无数在恬静的夜空携拥着旋舞的繁星…… 螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底.为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”.因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数.
❻ e值是怎么来的
第一次提到常数e,是约翰·纳皮尔(John Napier)于1618年出版的对数着作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德(William Oughtred)制作。第一次把e看为常数的是雅各·伯努利(Jacob Bernoulli)。
已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。
(6)e怎么得到的数学扩展阅读
e最初不是在自然界中发现的,而是与银行的复利有关。
想象一下,如果把钱存在年利率为100%的银行中,一年之后的钱将会增加为原来的(1+1)^1=2倍。假如银行不用这种方式来结算利息,而是换成六个月算一次,但半年的利率为之前年利率的一半,也就是50%,那么,一年后的钱将会增加为原来的(1+0.5)^2=2.25倍。
同样的道理,如果换成每日,日利率为1/365,则一年后的钱将会增加为原来的(1+1/365)^365≈2.71倍。
❼ 数学上的e从何而来
e是自然对数的底数,是一个无限不循环小数,其值是2.71828……,是这样定义的: 当n->∞时,(1+1/n)^n的极限。 注:x^y表示x的y次方。 随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000。但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了。 e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。
❽ 高数中的e的值到底咋算出来的
计算方法如下:
已知函数
个。在a较小时,结果不太正确。但是随着a的增大,这个定理会越来越精确。这个定理叫素数定理,由高斯发现。
❾ 数学中的“e”是如何得出的拜托各位了 3Q
解:e=1+1+(1/2!)+(1/3!)+..+(1/n!)+..=2.7182818284590... 即e是上述无穷级数之和.e的实际值也是通过计算机用这个式子算 出来的.n取的越大,结果越精确.
❿ 数学中的e怎么来的
对于数列{ ( 1 + 1/n )^n }, 当n趋于正无穷时该数列所取得的极限就是e,即e = lim (1+1/n)^n。 数e的某些性质使得它作为对数系统的底时有特殊的便利。以e为底的对数称为自然对数。用不标出底的记号ln来表示它;在理论的研究中,总是用自然对数。 历史上误称自然对数为纳皮尔对数,取名于对数的发明者——苏格兰数学家纳皮尔(J.Napier A.D.16-17)。纳皮尔本人并不曾有过对数系统的底的概念,但他的对数相当于底数接近1/e的对数。与他同时代的比尔吉(J.Burgi)则创底数接近e的对数。 通过二项式展开,取其部分和,可得e的近似计算式 e = 1 + 1/1! + 1/2! + ... + 1/n! + theta/n!*n, 其中最后一项为余项,它控制计算所需达到的任意精度。