‘壹’ 数学证明题有什么技巧吗我每次做数学试卷时间都不够
以下就是10类几何证明题的常见思路:
1
证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
2
证明两个角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。
9
证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
10
证明四点共圆
1.对角互补的四边形的顶点共圆。
2.外角等于内对角的四边形内接于圆。
3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。
4.同斜边的直角三角形的顶点共圆。
5.到顶点距离相等的各点共圆。
‘贰’ 数学证明的一些技巧
学数学重要的是多想,多尝试.
其次就是做点题,主要是自己思考思路
然后你看到题目就会有很多的想法
多尝试几种不同的方法
绝对是必要的
做证明题
我一般是用反推的方法(术语好象是叫综合法)
在草纸上从结果推要证明什么
一般简单点的都能做出来
复杂的就得看你的运气和知识掌握的程度了
记住辅助线的目的是为了更直观的了解要证明的内容
‘叁’ 做题技巧数学初中几何证明题
初中数学的学习是非常重要的,数学成绩也决定了我们中考成绩的好坏,在数学大大小小的考试中,几何证明题是必考知识点,但是很多同学对于这种题型不知道如何下手,几何题型在将来的高中数学中也是基础内容,所有应该引起大家的重视。下面给大家分享一些关于做题技巧数学初中几何证明题,希望对大家有所帮助。
一.证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二.证明两个角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等
三.证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
四.证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的'中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
五.证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六.证明角的和差倍分
1.与证明线段的和、差、倍、分思路相同。
2.利用角平分线的定义。
3.三角形的一个外角等于和它不相邻的两个内角的和。
七.证明线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八.证明两角的不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分
九.证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
十.证明四点共圆
1.对角互补的四边形的顶点共圆。
2.外角等于内对角的四边形内接于圆。
3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。
4.同斜边的直角三角形的顶点共圆。
5.到顶点距离相等的各点共圆。
拓展阅读:数学成绩怎么提升
主动预习
预习是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。
抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
主动思考
很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。
主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。
靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是 方法 !
拓宽解题思路
数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。
必须要有错题本
说到错题本不少同学都觉得自己的 记忆力 好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。
错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。
做题技巧数学初中几何证明题相关 文章 :
★ 中考数学复习:与圆有关的几何题型及解题技巧
★ 数学几何学习技巧
★ 初中数学三角形全等解题技巧
★ 初中数学压轴题解题技巧有哪些
★ 中考数学答题技巧步骤
★ 高中数学证明题的解题方法有哪些
★ 初三数学的解题技巧
★ 初中解数学压轴题技巧
★ 初二数学学习方法技巧整理
★ 初中数学解题方法总结有哪些
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();‘肆’ 数学证明题有什么用啊
数学分两种。一种是,这还要证。另一种,这也能证。
第一种是证明题,告诉你答案求过程。
第二种是解答题,提个问题让你回答。
学数学、学理综都要是锻炼思维能力的,没有像文科那样死板。数学证明题就是锻炼思维的过程。解答题不也是考个过程,答案占不了多少分的。
我的数学老师说过,上了高中学数学基本和生活没多大关系了,要不是来当老师,可能这一辈子不会用到这些。
就是没有用啊,可是就是得学啊!又不当运动员,上什么体育课?可是就是得上!
‘伍’ 请问做数学证明题时用到的是什么思维能力
有两个原因:
1、 最主要的是,你对定理定义不熟,理解不透。证明题是最能考察学生对定理定义掌握的题型,尤其是抽象型证明题。应该熟读课本,背熟理解定理定义(书本上都有黑体字写的),此为根本。
2、 你看题不够多,缺乏做证明题的技巧。应该找来一大堆证明题,不用做,就不断的,一遍遍的看。你把200道证明题反复看3-5遍,基本上证明技巧你都能掌握了,应付考试绰绰有余。
技巧问题是可以在短时间内突击的。但是千万不可忽视根本,也就是书上的定理,这是要花功夫的。
你的问题在每一个刚接触数学新知识的人身上都有发生,最根本的原因就是对定理定义不熟悉,在研究了一段时间后,对定理有了一定了解之后,就不怕证明题了。有些人就上课听一下,下了课不看书不做作业,但是他们考试从没有困难。就是因为他们理解力强,在上课的短短时间内就理解了定理,就像学会了独孤九剑,来什么破什么!所以没天赋的学生,应该在课后多花时间研究一下定理,切记。 思维能力是能够提高的。
一、 敏捷性
是指思维活动的反应速度和熟练程度,表现为思考问题时的快速灵活,善于迅速和准确地做出决定、解决问题。培养思维的敏捷性应注意:l、熟练掌握基础知识和基本技能,熟能生巧。2、课堂听讲超前思维,抢在老师讲解之前进行思考,把课堂接受知识的过程变成思维训练的活动。3、定时作业,有意识地限定时间完成学习任务。
二、 深刻性
是指思维活动的抽象和逻辑推理水平,表现为能深刻理解概念,分析问题周密,善于抓住事物的本质和规律。培养思维的深刻性应注意;l、追根究底,凡事都要去问为什么,坚决摈弃死记硬背。2、积极开展问题研究,学写小论文,养成深钻细研的习惯。
三、 整体性
指善于抓住问题的各个方面,又不忽视其重要细节的思维品质。考虑问题,总是从整体出发,能够很好地处理整体与局部关系。培养思维的整体性应注意:l、站在系统的高度学习知识,注重知识的整体结构,经常进行知识总结。2.寻找新旧知识的联系与区别,挖掘共性,分离个性,在比较中学习新知识。3、注重知识的纵横联系,在融会贯道中提炼知识,领悟其关键、核心和本质。
四、 创造性
指思维活动的创造意识和创新精神,不墨守成规,奇异、求变,表现为创造性地提出问题和创造性地解决问题。培养思维的创造性应注意:l、加强学习的独立性,保持应有的好奇心。2.增强问题意识,在课堂听讲和读书学习中,注意发现问题,提出问题。3、注重思维的发散,在解题练习中进行多解、多变。
思维能力的训练是一种有目的、有计划、有系统的教育活动。对它的作用不可轻估。人的天性对思维能力具有影响力,但后天的教育与训练对思维能力的影响更大、更深。许多研究成果表明,后天环境能在很大程度上造就一个新人。
思维能力的训练主要目的是改善思维品质,提高学生的思维能力,只要能实际训练中把握住思维品质,进行有的放矢的努力,就能顺利地卓有成效地坚持下去。思维并非神秘之物,尽管看不见,摸不着,来无影,去无踪,但它却是实实在在,有特点、有品质的普遍心理现象。
(1)推陈出新训练法
当看到、听到或者接触到一件事情、一种事物时,应当尽可能赋予它们的新的性质,摆脱旧有方法束缚,运用新观点、新方法、新结论,反映出独创性,按照这个思路对学生进行思维方法训练,往往能收到推陈出新的结果。
(2) 聚合抽象训练法
把所有感知到的对象依据一定的标准“聚合”起来,显示出它们的共性和本质,这能增强学生的创造性思维活动。这个训练方法首先要对感知材料形成总体轮廓认识,从感觉上发现十分突出的特点;其次要从感觉到共性问题中肢解分析,形成若干分析群,进而抽象出本质特征;再次,要对抽象出来的事物本质进行概括性描述,最后形成具有指导意义的理性成果。
(3) 循序渐进训练法
这个训练 法对学生的思维很有裨益,能增强领导者的分析思维能力和预见能力,能够保证领导者事先对某个设想进行严密的思考,在思维上借助于逻辑推理的形式,把结果推导出来。
(4) 生疑提问训练法
此训练法是对事物或过去一直被人认为是正确的东西或某种固定的思考模式敢于并且善于或提出新观点和新建议,并能运用各种证据,证明新结论的正确性。这也标志着一个学生创新能力的高低。训练方法是:首先,每当观察到一件事物或现象时,无论是初次还是多次接触,都要问“为什么”,并且养成习惯;其次,每当遇到工作中的问题时,尽可能地寻求自身运动的规律性,或从不同角度、不同方向变换观察同一问题,以免被知觉假象所迷惑。
(5) 集思广益训练法
此训练法是一个组织起来的团体中,借助思维大家彼此交流,集中众多人的集体智慧,广泛吸收有益意见,从而达到思维能力的提高。此法有利于研究成果的形成,还具有潜在的培养学生的研究能力的作用。因为,当一些富个性的学生聚集在一起,由于各人的起点、观察问题角度不同,研究方式、分析问题的水平的不同,产生种种不同观点和解决问题的办法。通过比较、对照、切磋,这之间就会有意无意地学习到对方思考问题的方法,从而使自己的思维能力得到潜移默化的改进。
‘陆’ 数学初中证明题技巧
几何证明题不仅是学生学习过程中的难处,还是教学过程中教师最头疼的知识,因为它在一定程度上涉及的东西比较多,还比较曲折,导致学生在学习过程中很难对其进行理解,下面是我为大家整理的关于数学初中证明题技巧,希望对您有所帮助。欢迎大家阅读参考学习!
1数学初中证明题技巧
读题要细心
有些学生一看到某一题前面部分有似曾相识的感觉,就直接写答案,这种还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取,我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置.?
要记.
这里的记有两层意思.第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来.如给出对边相等,就用边相等的符号来表示;第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来.?
要引申
难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论,然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习.?
对于读题这一环节,我们之所以要求这么复杂,是因为在实际证题的过程中,学生找不到证明的思路或 方法 ,很多时候就是由于漏掉了题中某些已知条件或将题中某些已知条件记错或想当然地添上一些已知条件,而将已知记在心里并能复述出来就可以很好地避免这些情况的发生.
2初中数学证明题的解题技巧
(一)分析
在教学过程中指导学生用 教学方法 中的分析法,从而一步步对证明思路进行探究。教师可以用那种提问的方式来指导学生,学生会在教师的指导下经过认真的分析、思考、比较等进行问题的解决。然而,关于证明题的相关分析,有以下三种思考方式:1. 正向思维。对于那种相对来说比较简单的题目,我们可以通过正向对其解题思路进行考虑,这样可以轻而易举的做出相关题目。2. 逆向思维 。也就是说,在进行思路分析时,要从相反的方向进行问题的思考,运用这种逆向思维进行解题,可以使学生从不同角度来思考问题,探索解题方法,从而拓宽解题思路,这种逆向思维的方法是需要学生进行掌握的。
在教学过程中,逆向思维是一种很重要的思维方法,在证明题中体现得非常明显。数学这门科目知识点很少,关键是如何将所学的知识进行运用,对于几何证明题来说,最好的方法就是逆向思维法。如果学生在一定程度上没有那所谓的做题思路,那就该引起高度重视了,比如:有些同学非常认真的读完一道题后,不知道该如何进行思路分析,不知道该如何下手,针对这一现象,建议从得出的结论出发。例如:要想证明相等的两条线段在同一个三角形内,这种题型主要是考虑等角对等边,就比如这种题型:在三角形ABC中,AE是ABC的外角DAC的平均线,并且AE平行BC,证明AB=AC,那么,在对它进行相关分析时,如果想要证明两条边相等,就得考虑等腰三角形的定义来证明。
证明思路为:因为AE平分角DAC,角DAE=角EAC,又因为AE平行BC,所以角DAE=角B,角EAC=角C,所以角B=角C,所以三角形ABC是等腰三角形,所以AB=AC。这样,一个证明题就完了。因此,在做这种证明题的时候,要结合所给出的条件,去看还缺少什么样的条件与需要证明,证明这些条件的过程中又需要什么,是否需要在此基础上做辅助线,按照这样的思路思考下去,就能够找到解题的方法,然后将过程写出来就可以,这是解题过程中最好用的方法。3. 正逆结合。对于从结论中很难分析出思路的那种题目,可以通过结合已知条件进行认真分析,在几何证明题中已知的条件都会在证明解题过程中用到,比如要想证明角平分线,就要想到哪两个角相等,或者根据角平分线的相关性质得到哪两条线段相等等等。用这样正逆结合的方法来得出解题思路,也是教学中经常用到的,正所谓,正逆结合,百战百胜。
(二)书写
在理清解题思路后,就要对解题过程进行书写,这个过程要格外注意数学符号和数学语言的应用,因为在过程中对它们要求是非常高的,如果写错一点,即使思路再对也无济于事。因此,在书写完后,要认真检查,确保准确无误。当然,几何证明题还需要学生在课堂结束后进行做练习题,以便增强自身 记忆力 ,提高解题水平。
3初中数学几何证明题技巧
牢记几何语言
几何证明题,要使用几何语言,这对于刚学几何的学生来说,仅当又学一门“外语”,并努力尽快地掌握这门“外语”的语言使用和表达能力。
首先,从几何第一课起,就应该特别注意几何语言的规范性,要让学生理解并掌握一些规范性的几何语句。如:“延长线段AB到点C,使AC=2AB”,“过点C作CD⊥AB,垂足为点D”,“过点A作l∥CD”等,每一句通过上课的教学,课后的辅导,手把手的作图,表达几何语言;表达几何语言后作图,反复多次,让学生理解每一句话,看得懂题意。
其次,要注意对几何语言的理解,几何语言表达要确切。例如:钝角的意义是“大于直角而小于平角的叫钝角”,“大于直角或小于平角的角叫钝角”,把“而”字说成了“或”字,这就是学习对几何语言理解不佳,造成的表达不确切。“一字之差”意思各异,在辅导时,注重语言的准确性,对其犯的错误反复更正,做到学习之初要严谨。
规范推理格式
数学中推理证明的书写格式有许多种,但最基本的是演绎法,也就是从已知条件出发,根据已经学过的数学概念、公理、定理等知识,顺着推理,由“已知”得“推知”,由“推知”得“未知”,逐步地推出求证的结论来。这种证题格式一般叫“演绎法”,课本上的定理证明,例题的证明,多数是采用这种格式。它的书写形式表达常用语言是“因为…,所以…”特别是一开始学习几何证明,首先要掌握好这种推理格式,做到规范化。
积累证明思路。
“几何证明难”最难莫过于没有思路。怎样积累证明思路呢?这主要靠听讲,看书时积极思考,不仅弄明白题目是“如何证明?”,还要进一步追究一下,“证明题方法是如何想出来的?”。只有经常这样独立思考,才会使自己的思路开阔灵活。随着证明题难度的增加,还要教会学生用“两头凑”的方法,即在同一个证明题的分析过程中,分析法与综合法并用,来缩短已知与未知之间的距离,在教学安排时,要给其足够的时间思考,而且重复证明思路,提高对解题思路的理解和应用能力。
4初中数学的方法和技巧
注重数学基础知识的学习和积累
努力做到课前仔细预习,课上认真听讲,课后及时复习。一直以来,很多同学很不在乎学习数学的基础知识,认为基础知识在解题时用不上,尤其是数学的概念,定义和定理在考试时候也不会直接考到,学了也不会有用。其实这种想法是一个非常致命的错误,现在有很多学生,学习能力很强,也很有聪明,但在学习中忽视了基础知识的学习,没有抓住学习的重点,最后非常遗憾的没有学好数学。
其实,在中考中,大概有80%的题目都直接或者间接和基础知识有关系,而只有20%的题目才是我们所谓的难题,但是这些难题也都是由很多基础的题目综合而来的。所以要想学数学,首先应该也是必须要学好数学的基础知识。那么怎样学习基础知识呢?我的方法是 课前预习 ,课中听讲,课后复习。只要这三个方面坚持不懈的结合起来,我相信最后一定能提高学生的数学成绩。
培养和锻炼数学的解题方法和技巧
多做有针对性同时难度适当的同步练习,循序渐进,周而复始。很多同学在学习数学的过程中非常地努力,也知道要做大量的习题,有的甚至还自觉规定每天的做题数量,但是最后数学成绩提高也不是很明显。这是为什么呢?我想很大程度上是由于这些同学所做的习题没有针对性。
对于做题,我的观点是不仅要做题,还要做好题,在这里我想说的是我们学而思的练习都是经过各个老师精挑细选的习题,又经过无数学员的检验,可以说是非常有针对性,当然啦现在书店中很多习题资料也很不错,希望大家能仔细挑选。同时,不仅要针对性练习,更重要的是要对做过的习题不断地 总结 和 反思 ,总结自己为什么做错了,错在哪里了,那么正确的思路又是什么,等等,只要经过这样的反复思考,我相信咱们学员的学习成绩一定会有一个很大的提高。
5初中数学几何证明题技巧
教学内容:
十几减9
第1———2页。
教学目的:
1、让学生经历从实际情况里提出问题,并解决问题的过程,理解十几减9的计算方法,能准确算出十几减9的减法算式
2、通过让学生动手操作、实践,在实践中探究解决问题的方法,重视算法多样化,发展学生的创新意识和培养求异精神。
3、利用所学知识解决生活中相应的实际问题,体会到数学知识在生活中的重要作用。
教学重、难点:
让学生通过动手操作实践,共同合作,探究十几减9的计算方法。
教具准备:
相应的CAI课件、口算卡片
教学过程:
一、创设情景,提出问题。
猴子卖桃(小猴子有13个桃,小兔买走9个。)
问:小兔买走9个以后还剩几个?
你是怎样知道还剩4个?
引导学生说出:小猴原来有13个桃,卖了9个后,还剩下4个。
问:你能根据猴子卖桃的情景列出算式来吗?
板书:13—9
二、自主探究,领悟算法。
1、问:怎样才能准确地算出13—9=?
请同学们认真想一想,可以借助你手中的学具摆一摆,以四人小组为单位想一想。
2、各小组汇报活动结果。
每个组先派代表上讲台演示,发表意见解释自己的想法。随后允许同一小组的其他同学对自己组中发言的同学作补充,指导学生有条理的表达。
有的学生会从13个小圆片了一个一个地减连续减去9个剩下4个;
有的学生从10个一堆里减去9个,再把剩下的1个和3个一堆的合在一起,的出剩下4个;
有的学生先减去3个一堆的再从10个一堆了拿走6个剩下4个;
有的学生这样想:因为9加4等于13,所以13减9等于4;
3、教师对学生想出的正确算法给予肯定与表扬。
问:在那么多种算法中,你最喜欢哪一种算法?并 说说 你为什么喜欢这种算法。
4、用你喜欢的方法计算:
12—9=¨
16—9=¨
三、巩固练习,深化运用。
1、“想想做做”第1题;
学生看图,理解图意后,让学生用自己喜欢的算法准确计算15—9=17—9=
2、对比练习;
以小组合作为单位填写,然后说说上下两题有什么联系?
例如:当你看到9+2=11时,你会想到什么?初步让学生认识加、减互逆关系。
3、口算竞赛(完成书本2页第5题);
让知道答案的学生马上站起来回答。
4、归类整理;
把第5题的算式按规律排列整理如下:
11—9= 14—9= 17—9=
12—9= 15—9= 18—9=
13—9= 16—9= 19—9=
5、引导学生观察,初步感知十几减几的技巧。
3初中数学几何证明题技6
教学目标
1、使学生认识时间单位年、月、日,了解它们之间的关系。
2、培养学生感受数学和实际生活的紧密联系,激发学生学习的积极性,同时对学生进行珍惜时间的 教育 。
教学重难点:认识时间单位年、月、日,了解它们之间的关系,记住各月的天数。
教具、学具。挂图、年历
一、创设情境 引入新课
1、同学们,你们知道今天是几月几日吗?(学生回答)你是怎么知道的?
2、生活中每天都有很多事情发生,在一年中有很多值得纪念的重大节日,请同学们仔细观察(出示挂图)图上描述的是什么事?你知道这些事发生的时间吗?把你知道的跟同学说一说好吗?
3、你们还知道哪些有意义的日子呢?
4、今天我们就来学习有关年、月、日的知识。
板书:年、月、日
二、自主探索 合作学习
1、认识年历
师:请同学们拿出自己的年历,认真观察,你可以从年历上直接了解到哪些知识?
①让学生独自观察
②同桌讨论
③你们能根据年历回答问题吗?
一年有几个月?板书:一年12个月
哪几个月是31天?哪几个月是30天?
二月有多少天?一年有多少天?
板书:大月(31天):一、三、五、七、八、十、十二、
小月(30天):四、六、九、十一、
特殊月(28天):二
2、教学生记天数的方法
我们知道了每个月的天数,也知道大月和小月,有没有好的办法让我们很快的记住每个月的天数呢?
(1)可以用拳头帮助记忆。凸起的地方每月是31天,凹下的地方每月是30天(二月除外)
师做示范 学生动手数一数
(2)老师再介绍一首儿歌,帮你们记住一年中的大月。( 出示儿歌)
板书:一、三、五、七、八、十、腊,三十一天永不差。
3考考你
你们都记住了吗?现在老师可要考考你们了。
①你的生日是几月几日?你父母的生日是几月几日,用笔在年历上画出来,并说说是大月还是小月。
②老师的生日是大月的第二个月,你知道是几月吗?
4、游戏
我们一起轻松一下,玩个小游戏吧,老师报月份,如果是大月就请同学们举右手,是小月就请同学们举左手,明白了吗?
三、巩固练习
完成课本48页做一做
四、本课小结;
1、通过这节课的学习,你们都学会了哪些知识?
2、教师总结:
板书设计: 年、月、日
一年12个月
大月(31天):一、三、五、七、八、十、十二
小月(30天):四、六、九、十一
特殊月(28天):二
一、三、五、七、八、十、腊,三十一天永不差。
3初中数学几何证明题技7
教学目标:
1、知识目标:结合生活实际,理解多一些、多得多、少一些、少得多的含义;能在具体情境中把握数的相对大小关系;发展学生的数感。
2、情感、能力目标:培养学生合作交流、勇于发表意见等良好的学习习惯;渗透估计的思想,发展估计意识。
教学重难点:
理解多一些、多得多、少一些、少得多的含义;在具体情境中把握数的相对大小关系。
教学流程:
一、谈话激趣,铺堑导入。
1、谈话激趣。
师:小朋友,你们去过养殖场吗?今天,小灰兔朋友要带我们去参观动物王国里的养殖场,你们想去吗?
导语:好了!现在我们可以去参观动物王国里的养殖场了,大
家请看(师出示课件)。
【设计意图:本节课通过创设“参观动物王国里的养殖场”,旨在激发学生的兴趣。但,部分学生对“多得多、多一些、少得多、少一些”理解困难,再加上教材的插图不够直观形象,不能让学生一目了然:“X比X多得多,X比X多一些”。因此,在这里,通过引导学生解决小灰兔带来的问题,让学生直观形象的感受“多得多……”的含义,让数学模型经历从直观到抽象的过渡,为新知的探索起到铺堑的作用。】
二、引导交流,理解新知。
(一)观察。师:这就是动物王国里的养殖场,多美丽呀!大家仔细瞧瞧,图上有什么?跟同桌的同学说一说。
(二)反馈。学生自由发言,师根据学生的发言并板书:
鸡85只鸭42只鹅34只
(三)说一说。师:请你们用刚才的“多得多、多一些、少得多、少一些”在小组里说一说,谁多谁少?(师巡视指导,帮助个别学习困难的小组。)
(四)想一想。课件师:请大家打开课本观察“想一想”的内容,羊可能有多少只?通过看图,你还知道了什么?(由学生自由回答,师再板书,读题后让学生独立完成。反馈交流时,让 学生 自我评价 或评价他人。)
【设计意图:在上个环节的基础上,学生较轻松地完成“说一说”这部分内容,运用小组交流的形式,描述数量间的关系,进一步发展学生的数感。在反馈交流时,教师引导学生进行自评和他评,有助于帮助学生认识自我,建立信心。】
三、练习巩固,扎实新知。
师:小朋友!闯关游戏开始了,今天要闯三关,大家可要努力哦,比一比,看谁得的红旗多!
1、P31第1题。引导学生看清题意,再让生独立解答,最后集中交流,进行评价。
2、P31第2题。帮助理解题意,让生认真思考后做答,交流评价。
3、P31第3题。指名生说明题意,再独立思考做答。(反馈时,可能会出现两个答案,只要理由正确,可以加以肯定。)
4、游戏。
(1)师:恭喜小朋友闯完这三关,现在我们来玩个数学游戏,好不好呀?嗯,请大家注意了:
老师在纸上写了一个两位数,你们猜一猜,是多少?(根据学生的回答,教师用“多得多、多一些、少得多、少一些”加以提示。)
(2)30页,兔子有多少只?
四、总结。
师:今天玩得开心吗?你学会了什么?
调查家里成员的年龄,并用“多得多,多一些,少得多,少一些”说一说。
数学初中证明题技巧相关 文章 :
★ 初中数学的解题方法有哪些
★ 做题技巧数学初中及注意事项
★ 初中解数学压轴题技巧
★ 初中数学三角形全等解题技巧
★ 初中数学选择填空答题技巧大全
★ 初二数学学习方法技巧整理
★ 高中数学证明题的解题方法有哪些
★ 初中数学压轴题技巧有哪些
★ 初中数学几何做辅助线方法技巧
★ 初中数学复习方法大全
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();‘柒’ 初中数学证明技巧
要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。
下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
*12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两个角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
*9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。
三、证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
*10.在圆中平分弦(或弧)的直径垂直于弦。
*11.利用半圆上的圆周角是直角。
四、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
五、证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明 角的和差倍分
1.与证明线段的和、差、倍、分思路相同。
2.利用角平分线的定义。
3.三角形的一个外角等于和它不相邻的两个内角的和。
七、证明线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
*5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、证明两角的不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
*4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
九、证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
*5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
十、证明四点共圆
*1.对角互补的四边形的顶点共圆。
*2.外角等于内对角的四边形内接于圆。
*3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。
*4.同斜边的直角三角形的顶点共圆。
*5.到顶点距离相等的各点共圆
希望对你有所帮助,祝您学习进步!
‘捌’ 数学证明题在什么情况下可以写同理
当方法和定理应用完全相同,只是改变了数据的时候,证明便可以写同理
‘玖’ 初2数学证明题的技巧和思想
问题一 :教学目的和要求有哪几方面?
(1)要教给学生的基础知识(2)要让学生掌握的基本技能;(3)解决实际问题的能力;(4)个性品质和思想观念。
(1)基础知识
例如:“全等三角形”教学中,应注意讲清全等三角形的概念,课本中是用“重合”这个很形象的语言来描述的,所以学生并不难理解,但往往以对此重视不够,体会不到它的重要性。因为这个概念搞不清楚,为影响到“对应”概念的理解,而“对应”又是不加定义的概念,它在解决三角形,以及相似三角形高中学习集合理论都有直接关系。因此,应该把“全等形”、“对应”这两个概念讲清楚。“全等形”:包括“形相同”、“大小等” 这两个方面,“对应”按顺序找对应边对应角。关键是确定对应顶点。——方法、规律。
例:直线的“倾斜角”内涵包括:“直线向上方向”“X轴的正方向”“最小角”“正角”
Y 所以需引导学生考虑:“一条直线在直角坐标当中的位置是如何
L 确定的?”( )再引入直线的方向如何确定(由下到上)
X 由此产生对“倾角”的需求。
O 一个正确的概念需经过多次反复方能形成,为此,对比在这里
是重要的。(如图一)
对比方法:正误对比,新旧对比,相似对比,导向对比,综合对比等。
(2) 基本技能
技能的解释:技能是在个体身上固定下来的自动化的行动方式,是对一系列行动方式的概括。
通俗地说:是按照一定的程序与步骤来完成的动作,技能包括心智技能(内隐)与动作技能(外显)。
例1:解一元一次方程的一般步骤是:
去分母——去括号——移项——合并同类项——化成最简方程ax=b(a≠0)的形式
——方程两边都除以未知数的系数——得出方程解
例2:平面几何语言是立体几何语言的基础,平面几何入门教学,在进行几何语言表述训练中,关于线段延长线的画法,可以教为学生正确运用下述规范化的几何作图语言:
(1) 延长线段(AB)
(2) 延长线段 (3) 延长 (4) 反向延长线段
例3:立体几何中计算空间的角和距离的问题概略性推理:
构造 计算 结论
空间计算问题 平面问题 平面问题的解 空间问题的解
认定 三角形
[练习1]:概括出“数学归纳法证明”的一般步骤。
(3)基本方法
中学教学的基本方法一般可分为两类:
一类:逻辑思维方法——是研究问题和思考问题的方法。如观察、实验、演绎、归纳、类比、化归、转换、抽象、概括等方法。
另一类:解题方法——是处理某类具体问题的方法。如代入、消元、换元、降次、配方、待定系数、图象、分析、综合、谬、比较、分类、平移、参数、映射等方法。
例如:复数教学中,基本方法是化归法——复数问题转化为实数问题来解决:
代数表示:z=a+bi ——代数问题
复数
三角表示:z= r( )——三角问题
实数问题
问题 几何表示:向量 ——几何问题
复数模的性质
例2立体几何中求棱柱的侧面积的教学中,需要渗透以下教学方法:
直棱柱—矩形
求S棱柱侧是将棱柱的侧面积沿一条侧棱剪开后展现在一个平面上侧棱柱—平行四边形
这里必须讲清:
(1)不展开侧面能否计算直棱柱的侧面积?——只须用不完全归纳法计算若干个矩形面积的和。
(2)为什么要展开侧面积?——运用化归方法,将空间问题转化为平面问题。
(3)为什么能展开?展开后为什么是矩形?——培养学生的推理能力。
斜棱柱应讲清:
(1)课本上证法是什么方法?——不完全归纳法。
(2)能否对斜棱柱的侧面积公式进行推导,转化为直棱柱面积计算公式?——可以,只须通过直截面,将 斜棱柱分成再会两截,然后在拼成一个以直截面为底的直棱柱,便可用S直术S斜,这里又体现了化归思想和多面体中的割补法(平几中,平行四边形面积求得方法的迁移)
[思考1]:中学数学教学大纲对培养学生数学能力的要求是什么?(见大纲)
(1)运算能力
[思考2]:高中阶段的运算能力有哪些方面?又有哪些要求?
要求迅速、正确、合理的完成下列算:
a. 数与式的各种代数运算;初等超越运算;几何运算;分析运算;概率与统计运算等.
。
[思考3]: “数列中有那些运算要求?
(2)逻辑思维能力
学生的数学能力表现在诸多方面,而思维能力则是学生智力结构的核心。
思维:直觉思维、逻辑思维、非逻辑思维、逻辑思维能力等。
[思考4]:怎样培养学生的逻辑思维能力?
1,在运算能力方面,欲达"正确迅速"目的,就需在各类运算中概括出相应的运算规律,将其归纳为一般形式。
•思想方法 整式乘法
整式积 多项式
因式分解
•思维特点:——它是一咱逆向思维训练,具有发散性思维特征,同时也具有探索性。
•解决因式分解的一般模式
提取公因式
整式积 运用公式 分组分解 多项式
十字相乘
教学要求有不同的层次,知识点也有主次之分。弄清每项具体内容或知识点在整个教材中的地位和作用,才能分清主次、明确重点和难点。
例1:“一元二次方程”
重点和主要内容:求根公式、制列式、根与学数关系
例2:平几中就图形之间的内在联系而言;三角形是基本的图形,其它平面图形都可以转化为三角形来研究。
就应用而言:三角形知识在后继教学和生产实际中也经常用到。
就培养学生逻辑思维能力,推理论证能力而言:三角形一章担负着十分重要的奠基任务——它是平面几何教学的主要重点内容。
例6:立体教学中直线与平面一章为重点内容
线面关系:掌握,会用线面垂直关系判定
▲ 重视学科内部和学科之间的联系
学科内部的新旧衔接:小学与初中,初中与高中,例数的概念(小学与初中)运算律、结合律、交换律、平行概念
特别应重视知识上的“连接点”“间断点”“深化点”的处理。
将代数与几何,三角与立几中应用辅助角解立几问题,可以使数学知识相互渗透,互相促进,培养综合运用数学知识的能力。
点是什么?怎样抓住关键,突出重点,分散难点?教学时应注意什么?
第四,加强知识的应用
如作为等比数列的应用安排了一个近几年与人们日常生活有关的购物分期付款的例题;作为等差数列的应用,在“阅读材料”里介绍了有关储蓄的一些计算;此外在所增加的应用问题里还涉及房屋拆建规划、绕在圆盘上的线的长度等。
5,教学中应注意的几个问题
(1)把握好教学要求
由于本章联系的知识面广,具有知识交汇点的特点,在应试教育的“一步到位”的教育思想的影响下,本章的教学要求很容易拔高,过早地进行针对“高考” 的综合性训练,从而影响了基本内容的学习和加重了学生负担。
事实上,学习是一个不断深化的过程。作为在高一(上)学习的这一章,应致力于打好基础并进行初步的综合训练,在后续的学习中通过对本章内容的不断应用来获得巩固和提高。最后在高三数学总复习时,通过知识的系统梳理和进一步的综合训练使对本章内容的掌握上升到一个新的档次。
为此,本章教学中应特别注意一些容易膨胀的地方。例如在学习数列的递推公式时,不要去搞涉及递推公式变形的论证、计算问题,只要会根据递推公式求出数列的前几项就行了;在研究数列求和问题时,不要涉及过多的技巧;
(2) 有意识地复习和深化初中所学内容
与现行中学课本一样,新课本由于课时较紧等多种原因.在教学内容方面基本上也是直线编排的,对于初中学过的多数知识.在高中没有系统深入学习的机会。而初中内容是学习高中数学的必要基础,因而在学习高中内容时有意识地复习、深化初中内容显得特别重要。本章是高中数学的第三章,距离初中数学较近,与初中数学的联系最广,因而教学中应在沟通初、高中数学方面尽可能多地作一些努力。例如:
在等差数列、等比数列的通项公式和前n项和的公式中,涉及a1、 an、 n、 d、Sn几个量之间的关系,我们常常要通过将公式变形用其中的已知量来表示未知量。在这过程中,应有意识地复习等式的变形,提醒并及时纠正在变形中容易出现的错误。在根据有关公式和已知条件求未知量(比如求某一项时),常常要列出方程或方程组,然后求解。在这过程中,让学生认识我们的问题实际上是解一个方程或方程组,然后分析其中哪些是已知量,有几个末知量,能不能求解,怎样求解。通过这种有意识的分析,不仅复习了解方程和方程组的知识。而且了解了它的应用,培养了用方程或方程组解决问题的意识;
(3) 适当加强本章内容与函数的联系
适当加强这种联系,不仅有利于知识的融汇贯通,加深对数列的理解,运用函数的观点和方法解决有关数列的问题,而且反过来可使学生对函数的认识深化一步。比如,学生在此之前接触的函数一般是自变量连续变化的函数,而到本章接触到数列这种自变量离散变化的函数之后,就能进一步理解函数的一般定义,防止了前面内容安排可能产生的学生认识上的负迁移;
本内容与函数的联系涉及以下几个方面。
1.数列概念与函数概念的联系。
相应于数列的函数是一种定义域为正整数集(或它的前n个数组成的有限子集)的函数,它是一种自变量“等距离”地离散取值的函数。从这个意义上看,它丰富了学生所接触的函数概念的范围。
但数列与函数并不能划等号,数列是相应函数的一系列函数值。基于以上联系,数列也可用图象表示,从而可利用图象的直观性来研究数列的性质。数列的通项公式实际上是相应因数的解析表达式。而数列的递推公式也是表示相应函数的一种方式,因为只要给定一个自变量的值n,就可以通过递推公式确定相应的f(n)。这也反过来说明作为一个函数并不一定存在直接表示因变量与自变量关系的解析式。
2.等差数列与一次函数、二次函数的联系。
从等差数列的通项公式可以知道,公差不为零的等差数列的每一项an是关于项数n的一次函数式。于是可以利用一次函数的性质来认识等差数列。例如,根据一次函数的图象是一条直线和直线由两个点唯一确定的性质,就容易理解为什么两项可以确定一个等差数列。
此外,首项为a1、公差为d的等差数列前n项和的公式可以写为:
即当 时,Sn是n的二次函数式,于是可以运用二次函数的观点和方法来认识求等差数列前n项和的问题。如可以根据二次函数的图象了解Sn的增减变化、极值等情况。
(4)注意培养学生初步综合运用观察、归纳、猜想、证明等方法的能力
综合运用观察、归纳、猜想、证明等方法研究数学,是一种非常重要的学习能力。事实上,在问题探索求解中,常常是先从观察入手,发现问题的特点,形成解决问题的初步思路;然后用归纳方法进行试探,提出猜想;最后采用证明方法(或举反例)来检验所提出的猜想。应该指出,能够充分进行上述研究方法训练的素材在高中数学里并非很多,而在本章里却多次提供了这种训练机会,因而在教学中应该充分利用,不要轻易放过。
() 在符号使用上与国家标准一致
为便于与国际交流,关于量和单位的新国家标准中规定自然数集N={0,l,2.3,……},即自然数从O开始。这与长期以来的习惯用法不同,会使我们感到别扭。但为了不与上述规定抵触,教学中还是要将过去的习惯用法改变过来,称数集{1,2,3,…}为正整数集,并记为N+。