Ⅰ 七年级数学打好基础一元一次方程答案
一元一次方程
只含有一个未知数(即“元”),并且未知数的最高次数为1(即“次”)的整式方程叫做一元一次方程(英文名:linear equation with one
unknown)。一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a≠0)。求根公式:x=-b/a。
一元一次方程练习题和答案
第3章 一元一次方程全章综合测试
(时间90分钟,满分100分)
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.把方程 的分母化为整数后的方程是( ).
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程: -9.5.
20.解方程: (x-1)- (3x+2)= - (x-1).
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程 x-1=- ,得x= )
4. x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4 [点拨:设需x天完成,则x( + )=1,解得x=4]
二、9.D
10.B (点拨:用分类讨论法:
当x≥0时,3x=18,∴x=6
当x<0时,-3=18,∴x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、19.解:原方程变形为
200(2-3y)-4.5= -9.5
∴400-600y-4.5=1-100y-9.5
500y=404
∴y=
20.解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
∴21x=63
∴x=3
21.解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.解:(1)由已知可得 =0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.12×1281=153.72≈154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.
24.解:(1)∵103>100
∴每张门票按4元收费的总票额为103×4=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数>乙班人数
∴甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,∴103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存在.
故甲班为58人,乙班为45人.
======================================================================
3.2 解一元一次方程(一)
——合并同类项与移项
【知能点分类训练】
知能点1 合并与移项
1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.
(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.
2.下列变形中:
①由方程 =2去分母,得x-12=10;
②由方程 x= 两边同除以 ,得x=1;
③由方程6x-4=x+4移项,得7x=0;
④由方程2- 两边同乘以6,得12-x-5=3(x+3).
错误变形的个数是( )个.
A.4 B.3 C.2 D.1
3.若式子5x-7与4x+9的值相等,则x的值等于( ).
A.2 B.16 C. D.
4.合并下列式子,把结果写在横线上.
(1)x-2x+4x=__________; (2)5y+3y-4y=_________;
(3)4y-2.5y-3.5y=__________.
5.解下列方程.
(1)6x=3x-7 (2)5=7+2x
(3)y- = y-2 (4)7y+6=4y-3
6.根据下列条件求x的值:
(1)25与x的差是-8. (2)x的 与8的和是2.
7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.
8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.
知能点2 用一元一次方程分析和解决实际问题
9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?
10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.
11.小明每天早上7:50从家出发,到距家1000米的学校上学,每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时距离学校有多远?
【综合应用提高】
12.已知y1=2x+8,y2=6-2x.
(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?
13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.
【开放探索创新】
14.编写一道应用题,使它满足下列要求:
(1)题意适合一元一次方程 ;
(2)所编应用题完整,题目清楚,且符合实际生活.
【中考真题实战】
15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.
(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.
(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).
答案:
1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.
(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.
2.B [点拨:方程 x= ,两边同除以 ,得x= )
3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)
4.(1)3x (2)4y (3)-2y
5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .
(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.
(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.
(4)7y+6=4y-3,移项,得7y-4y=-3-6, 合并同类项,得3y=-9,
系数化为1,得y=-3.
6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.
(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,
系数化为1,得x=-10.
7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]
8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]
9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.
解这个方程,得x=7.
答:桶中原有油7千克.
[点拨:还有其他列法]
10.解:设应该从盘A内拿出盐x克,可列出表格:
盘A 盘B
原有盐(克) 50 45
现有盐(克) 50-x 45+x
设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.
解这个方程,得x=2.5,经检验,符合题意.
答:应从盘A内拿出盐2.5克放入到盘B内.
11.解:(1)设爸爸追上小明时,用了x分,由题意,得
180x=80x+80×5,
移项,得100x=400.
系数化为1,得x=4.
所以爸爸追上小明用时4分钟.
(2)180×4=720(米),1000-720=280(米).
所以追上小明时,距离学校还有280米.
12.(1)x=-
[点拨:由题意可列方程2x+8=6-2x,解得x=- ]
(2)x=-
[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]
13.解:∵ x=-2,∴x=-4.
∵方程 x=-2的根比方程5x-2a=0的根大2,
∴方程5x-2a=0的根为-6.
∴5×(-6)-2a=0,∴a=-15.
∴ -15=0.
∴x=-225.
14.本题开放,答案不唯一.
15.解:(1)设CE的长为x千米,依据题意得
1.6+1+x+1=2(3-2×0.5)
解得x=0.4,即CE的长为0.4千米.
(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),
则所用时间为 (1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);
若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),
则所用时间为 (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).
故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).
Ⅱ 一元一次数学题,求答案
1 假设苹果x千克,梨y千克。
x+y=5------1
4x+3y=17-----2
由1得x=5-y--------3
把3代入2得4*(5-y)+3y=17
化简得:20-4y+3y=17
3-y=0
y=3-------4
把4代入3得x=5-3=2
所以苹果2千克,梨3千克
2
成人票数+学生票数=1000张①或成人票款+学生票款=6950元②
设学生票数为X 成人票数为Y
X+Y=1000
5X+8Y=6950
X=350
Y=650
3
设购进甲种电视X台,乙种电视Y台,则购进丙种电视的数量应该 是 50-X-Y台
1500X+2100Y+2500(50-X-Y)=90000
化简得到二元一次方程 5X+2Y=175
又因为 X、Y、Z均是大于0小于50的整数
所以 上述二元一次方程只有四组解
X=27 Y=20 Z=3
X=29 Y=15 Z=6
X=31 Y=10 Z=9
X=33 Y=5 Z=12
因此,有四种进货方案
X+Y=1000
5X+8Y=7290
X=1000-Y
5000-5Y+8Y=7290
3Y=229
Y=7.333333333333333333333333
除不进
所以不可能
Ⅲ 有一道数学题用一元一次方程解(写出方程的每一式子的含义)
1)判断题:
判断下列方程是否是一元一次方程:
①-3x-6x2=7(
)
③5x+1-2x=3x-2
(
)
④3y-4=2y+1.
(
)
判断下列方程的解法是否正确:
①解方程3y-4=y+3
解:3y-y=3+4,2y=7,y=3.5
②解方程:0.4x-3=0.1x+2
解:0.4x+0.1x=2-3;0.5x=-1,x=-2
③解方程
解:5x+15-2x-2=10,3x=-3,x=-1;
④解方程
解:2x-4+5-5x=-1,-3x=-2,x=
.(
)
2)填空题:
(1)若2(3-a)x-4=5是关于x的一元一次方程,则a≠_
(2)关于x的方程ax=3的解是自然数,则整数a的值为_
(3)方程5x-2(x-1)=17
的解是_
(4)x=2是方程2x-3=m-
的解,则m=_
.
(5)若-2x2-5m+1=0
是关于x的一元一次方程,则m=_
.
(6)当y=_
时,代数式5y+6与3y-2互为相反数.
(7)当m=_
时,方程
的解为0.
(8)已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为______
.
3)选择题:
(1)方程ax=b的解是(
).
A.有一个解x=
B.有无数个解
C.没有解
D.当a≠0时,x=
(2)解方程
(
x-1)=3,下列变形中,较简捷的是(
)
A.方程两边都乘以4,得3(
x-1)=12
B.去括号,得x-
=3
C.两边同除以
,得
x-1=4
D.整理,得
(3)方程2-
去分母得(
)
A.2-2(2x-4)=-(x-7)
B.12-2(2x-4)=-x-7
C.12-2(2x-4)=-(x-7)
D.以上答案均不对
(4)若代数式
比
大1,则x的值是(
).
A.13
B.
C.8
D.
(5)x=1.5是方程(
)的解.
A.4x+2=2x-(-2-9)
B.2=8
C.4x+9
=6x+6
4)解答下列各题:
(1)x等于什么数时,代数式
的值相等?
(2)y等于什么数时,代数式
的值比代数式
的值少3?
(3)当m等于什么数时,代数式2m-
的值与代数式
的值的和等于5?
(4)解下列关于x的方程:
①ax+b=bx+a;(a≠b);
三.化简、化简求值
化间求值:
1、-9(x-2)-y(x-5)
(1)化简整个式子。
(2)当x=5时,求y的解。
2、5(9+a)×b-5(5+b)×a
(1)化简整个式子。
(2)当a=5/7时,求式子的值。
3、62g+62(g+b)-b
(1)化简整个式子。
(2)当g=5/7时,求b的解。
4、3(x+y)-5(4+x)+2y
(1)化简整个式子。
5、(x+y)(x-y)
(1)化简整个式子。
6、2ab+a×a-b
(1)化简整个式子。
7、5.6x+4(x+y)-y
(1)化简整个式子。
8、6.4(x+2.9)-y+2(x-y)
(1)化简整个式子。
9、(2.5+x)(5.2+y)
(1)化简整个式子。
10、9.77x-(5-a)x+2a
(1)化简整个式子。
把x=-2,
y=0.1,
a=4,
b=1代入下列式子求值
3(x+2)-2(x-3)
5(5+a)×b-5(5+b)×a
62a+62(a+b)-b
3(x+y)-5(4+x)+2y
(x+y)(x-y)
2ab+a×a-b
5.6x+4(x+y)-y
6.4(x+2.9)-y+2(x-y)
(2.5+x)(5.2+y)
9.77x-(5-a)x+2a
Ⅳ 一元一次方程怎么解答
你好。
【知识方法归纳】 1.列方程解比较容易的两步应用题 (1)列方程解应用题的步骤 ①弄清题意,找出未知数并用x表示; ②找出应用题中数量间的相等关系,列方程; ③解方程; ④检查,写出答案。 (2)列方程解应用题的关键 弄清题意后,找出应用题中数量间的相等关系,恰当地设未知数,列出方程。 (3)运用一般的数量关系列方程解应用题 首先未知数一定要明确。用一元一次方程解应用题只不过是把答案或者求出答案需要的条件变为x,从而更好地分析题目。 如果你算数学好的话,其实一元一次方程也不是太难。
下面是一般的一元一次方程的格式: 解:(问题照抄,只是“什么”改为x或根据题意来设) 依题意得(概括的用语,可以省略很多文字来说明,深受广大中学的师生所喜爱):列式(就是要你把x代入式子中,就像是你把算数的检查一样,把x当作答案来求已知条件) 解方程(就是要你把方程解出来)。一般在解决问题时第一步就是要设出未知数,未知数的设法主要有以下几种: 1,有比较关系时,如甲比乙多8,我们一般设较小的为X,这样计算时主要用的是加法不易出错; 2,有倍数关系时,如数学小组人数是英语小组的5倍,我们设一倍量为X,用乘法表示其余量利于计算; 3,在分数应用题中,我们设单位'1'为X, 4,在有比的问题中,我们设一份数为X, 5,在有和的问题中,我们设其中任意一个为X都可以,比如说两个班共有50人. 解应用题的基本步骤有: 1,依据题目要求设出合适的未知数; 2,根据题目实际情况找出等量关系,用文字关系式表示出来; 3,依据等量关系,把关系式中的每一项用数或者未知数表示出来列出方程; 4,解方程,依据题目问题计算; 5,把方程的解代入原题目检验. 其中的难点是第二步,找出等量关系,有些题目中的关系是比较明显的,而有的则是隐含的,需要大家去用心体会
Ⅳ 数学中的元、项、次是什么意思
元是未知量。比如二元就是两个未知量。项是所有的数字,未知量等。如3x+8y+2z+6就是四个项,次是指次方。就是未知量的幂。
Ⅵ 数学一元一次方程答案,要过程!
1>.设A桶有x千克,倒出后则剩余3/4
列方程30+1/4x+6=3/4x
解得x=72
2>.因为人数不变
列方程40m+10=43m+1
解得m=3
3>.因为有相同解
所以移项得x=3m+4 x=m-2
可得3m+4=m-2
解得m=-3
4>.设一个进价x元,另一个进价y元
列方程x+60%x=80
y-20%y=80
解得x=50,y=100,则x+y=150<160
赚了10元,所以选 B
5>.设用水x立方米
列方程1.8×15+(x-15)2.3+x=58.5
解得x=20
6>.设该数为x
列方程2x-1/2x=9
解得x=6
7>.设体积为1,时间为t min,则A管速率=1/45,B管速率=1/90,C管速率=1/60
列方程(1/45)t+(1/90)t-(1/60)t=1
解得t=60
8>.将x=-3代入方程
可得a=2,代入原方程得10-x=13+2x
解得x=-1
9>.设一个为x,则另一个为-x
则该方程变为3x-7=8-2x
解得x=3
10>.因为年龄差不变
所以列方程31-x=x-15
所以选 C
11>.设官兵x名,因为水果数量不变
列方程3x+20=4x-25
解得x=45,代入3x+20得155
所以官兵45名,水果155个
楼主多加分啊!!!
Ⅶ 趣味数学 一元钱到哪里去了答案
有3个人去投宿,一晚30元.三个人每人掏了10元凑够30元交给了老板.后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们,服务生偷偷藏起了2元,然后,把剩下的3元钱分给了那三个人,
每人分到1元.这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱,3个人每人9元,3 X 9 = 27元 + 服务生藏起的2元=29元,还有一元钱去了哪里?
答案:每人所花费的 9 元钱已经包括了服务生藏起来的 2 元(即优惠价 25 元+服务生私藏 2 元=27 元=3*9 元)因此,在计算这 30 元的组成时不能算上服务生私藏的那 2 元钱,而应该 加上退还给每人的 1 元钱。即:3*9+3*1=30 元正好!还可以换个角度想..那三个人一共出了 30 元,花了 25 元,服务生藏起来了 2 元,所以每人花了九元,加上分得的 1 元,刚好是 30 元。因此这一元钱就找到了。 小结:这道题迷惑人主要是它把那 2 元钱从 27 元钱当中分离了出来,原题的算法错误的认为 服务员私自留下的 2 元不包含在 27 元当中,所以也就有了少 1 元钱的错误结果; 而实际上私 自留下的 2 元钱就包含在这 27 元当中,再加上退回的 3 元钱,结果正好是 30 元。
Ⅷ 数学题一元钱去哪了答案 简明
那个题的算法都是错的,因为说的是顾客每人9元一共27加上服务员的2元是29
实际上是顾客的27元加上返还的3元一共是30元,,然后顾客的27元分为了服务员的2元和店长的25元
题目的算法就是错的,迷惑了你
不懂可追问,望采纳
Ⅸ 七年级数学一元一次方程试题的答案
七年级数学一元一次方程测试题
班级__________姓名___________学号______得分_______
一
.耐心填一填(10′×2=20′)
1.
方程
的解是__________,方程
的解是__________.
2.
若2a与1-a互为相反数,则a等于_____________.
3.
代数式
比3大5,则x的值为_________________.
4.
根据题意列出方程:
⑴设某数为x,某数的3倍与4的差等于10:______________.
⑵如右图,小红将一个正方形纸片剪去一个宽为4厘米的长条后,
再从剩下的长方形纸片上剪去一个宽为5厘米的长条,
且剪下的两个长条的面积相等.问这个正方形的边长应为多少
cm?
设正方形边长为xcm,则可列方程__________________.
5.
如果
-4=0是关于x的一元一次方程,那么a=
6.
当n=________时,单项式
与
是同类项.
7.
某品牌的电视机降价10%后每台售价为2430元,则这种彩电的原价为每台
元。
8.
在梯形面积公式
中,若
,
,
,则
________________.
二、精心选一选(3′×8=24′)
9.下列变形中正确的是(
)
A.由
得
B.由
得
C.由
得
D.由
得
10.
把方程
去分母后,正确的是(
)
A、
B、
C、
D、
11.方程
的“解”的步骤如下,错在哪一步(
)
A.
2(x-1)-(x+2)=3(4-x)
B.2x-2-x+2=12-3x
C.
4
x=12
D.x=3
12.下列方程括号内的数是这个方程的解的是(
)
A.
B.
C.
D.
13.方程
的解是
,则
等于(
)
A.
B.
C.
D.
14.一个长方形的长是宽的4倍多2厘米,设长为x厘米,那么宽为(
)厘米。
A、
B、4x-2
C、
D、
15.某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问第二组调多少人去第一组才能使第一组的人数是第二组的2倍?
设抽调
人,则可列方程(
)
A.
B.
C.
D.
16.某件商品标价为13200元,若以9折出售,仍可获利10%(相对于进货价),则该商品的进货价为(
)
A.10692元
B.10560元
C.10800元
D.11880元
三、解下列方程(6分×4=24分)
⑴2x+5=5x-7
(2)3(x-2)=2-5(x-2)
四、耐心解一解。(6′)
17.k取何值时,代数式
值比
的值小1?
五、列方程解应用题(10′+8′+8′)
18.
某中学组织同学们春游,如果每辆车座54人,有18人没座位,如果每辆车座72人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?
19.小明用每小时8千米的速度到某地郊游,回来时走比原路长3
千米的另一条路线,速度为每小时9千米,这样回去比去时多用
小时,求原路长.
20.李小明一年前存入一笔钱,年利率为2.25%,但要缴纳20%的利息税,
到期共获得本息和为16288元,求李小明一年前存入银行的本金是多少元?
附加题:某城市制定了居民用水标准,规定三口之家每月用水量的最高标准,超标部分加价收费,如果在标准用水量内每米3的水费是1.4元,超标部分每米3的水费是2.8元。现小明家是三口之家,某月用水14米3,妈妈交水费22.4元,问这座城市规定三口之家每月用水量的最高标准是多少米3?(10分)