‘壹’ 1浅谈小学数学教学中如何培养学生数学思维能力
一、激发学生思维动机
动机是人们“因需要而产生的一种心理反映”,它是人们行为活动的内动力。因此,激发学生思维的动机是培养其思维能力的关键因素。
教师如何才能激发学生思维动机呢?这就要求教师在教学中充分发挥主导作用,根据学生心理特点,教师有意识地挖掘教材中的知识因素,从学生自身生活需要出发,使其明确知识的价值,从而产生思维的动机。
例如:在教学根据实际情况用“进一法”和“去尾法”取商的近似数的应用题时,先出示题目:小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每个瓶最多可盛0.4千克,需要几个瓶?再让学生读题,分析解题思路。当学生回答出求需要准备几个瓶,就是看2.5千克里有几个0.4千克时,我先让学生猜一猜需要几个瓶,然后让学生独立计算出结果。算出结果为6.25,我问学生:“按‘四舍无入’法我们准备6个瓶子可以吗?”学生回答说“不可以。”
我又问:“为什么?”学生都知道需要再准备一个瓶子装剩下的0.1千克油,所以需要准备7个瓶子才行。最后让学生验证自己的猜想,老师并告诉:这种根据实际情况取近似数的方法叫“进一法”。随后用同样的方法教学了“去尾法”。由于这些例题都是生活中遇到的问题,学生容易理解掌握。这样也引发了学生探求新知的思维动机。
这样设计教学既渗透了“知识来源于生活”的数学思想,又使学生意识到学习知识的目的是为了解决生活和生产中的实际问题。学生的学习动机被激发起来了,自然会全身心地投入到后面的教学活动之中。
二、理清学生思维脉络
认知心理学家指出:“学生思维能力的发展是寓于知识发展之中的。”在教学中,对于每一个问题,既要考虑它原有的知识基础,又要考虑它下联的知识内容。只有这样,才能更好地激发学生思维,并逐步形成知识脉络。
1.引导学生抓住思维的起始点
数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生—发展—延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已有的经验开始,或从旧知识引入,这就是思维的开端。从学生思维的起始点入手,把握住思维发展的各个层次逐步深入直至终结。
2.引导学生抓住思维的转折点
学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。抓住转折点,有利于克服学生的思维障碍,有利于发散思维的培养。
三、在数学教学中培养学生的思维批判能力
没有批判就没有创新。因此,批判性思维也是思维品质的一个重要方面。设计些陷阱式的思维问题,能培养学生的批判思维能力。例如:在教学中我们经常看到这样的现象,当一个问题正面学习完以后,仅有大约百分之六十的学生基本掌握,有的学生因用错了概念、法则、公式、定理而把题做错。因此,应加强从反面培养学生的思维批判能力。在教学实践中,当讲完某一数学知识后,我故意设陷阱给学生,创设下列情境:一是使学生欲言而不能,心欲求而不得;二是诱使学生“上当”“中计”。经过分析批判后才恍然大悟。这种对事物的认识正确程度是正面培养所不能达到的。
四、教师要设计好练习题培养学生思维能力
1 .培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般情况下,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。
2.设计练习题要有针对性,要根据培养目标来进行设计
例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的'能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。(
)”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。
3.设计一题多变题,培养学生的思维能力小学数学知识的结构,都是由浅入深,由易到难,由简单到复杂的。如果教师在教学过程中依照知识的内在联系,适当地运用“一题多变”,可以防止学生的认识局限在所学的例题里,还可以避免解题的思路来束缚原有的路子,从而增强学生解题的应变能力。
培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般情况下,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。通过练习,学生的思维能力得到了进一步提高。
‘贰’ 小学数学教学中如何培养学生的发散思维能力
摘要:思维的积极性、求异性、广阔性、联想性等是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又可提高小学数学教学质量。关键词:激发 培养 训练 转化思想思维的积极主动性、创新性、扩展性、想象性等是发散思维的特性,在数学教学中有意识地抓住这些特性,并进行训练与培养,既可提高学生的发散思维能力,又可提高小学数学教学质量。
‘叁’ 如何在小学数学的教学过程中培养学生的发散性思
创新是一个民族发展的不竭动力,一个民族只有不断创新才能不断发展进步,也才能在激烈的竟争中立于不败之地。要想提高民族的创新能力,首先要高度重视创新教育,尤其是小学阶段,这是培养训练学生的创新发散思维的基础阶段,要在这个阶段让学生养成思维创新发散的习惯,必须加强对学生思维创新发散的训练,让学生从小养成思维创新发散的习惯,思维不被固定。
小学生的创新思维能力需要一个长期培养的训练过程,因此,在小学数学教学中,要激发学生的学习动力,有目的、有计划、有步骤地培养学生的创新思维能力,以期最大限度地开发学生的潜能。作为教师在教学中要遵循学生认知规律,重视学生获取知识的思维过程,通过操作、观察、引导学生进行分析、比较、综合,在感性认识的基础上加以抽象、概括、进行简单的判断、推理、启发学生动脑筋、想问题,鼓励学生质疑问难,提出自己的独立见解,培养学生能够有条理,有根据地进行思考。
1.搞好“创新教育”,首先是培养学生的创新意识,形成创新思维能力
1.1确立教学目标时,做到“上留天,下留地”。教学目标的确立,是教师教学思想的充分体现,同时也是培养学生创造才能的前提,有什么样的教学目标,就能培养出什么样的学生。但是在教学实践中教学目标的确立上,我始终坚持“上留天,不封顶;下留地,要保底”。也就是说在确立教学目标时既要遵循教学大纲的要求,扎扎实实地完成基础知识和基本技能的教学,达到教学大纲中规定的“了解”、“掌握”、“初步”、“熟练”等程度的要求;还要在完成上述教学目标的同时,注重培养学生敢于突破教材,敢于突破自我。鼓励学生在学习过程中,思维越活越好,思路越宽越好,质疑越多越好,方法越奇越好,速度越快越好,争论得越激烈越好,观察得越仔细越好。这样的教学目标的确立,不仅有利于基础知识和基本技能教学目标的完成,同时也为学生“八仙过海,各显神通”,为培养学生的创新意识,奠定了良好的基础。
1.2教学过程中,引导学生知道怎样学,即“会学”。创新意识应该说不是在“学会”中形成的,而是在“会学”的基础上形成的。“学会”学生侧重于接受知识,积累知识,以提高学生解决问题的能力,而“会学”是学生侧重于掌握学法,主动探求知识,目的在于发现新知识,提出新问题,解决新问题。“学会”是“会学”的前提,“会学”是“学会”的创造。因此,我在课堂教学实践中,坚持把教师的“教”变成教师的“引”,把学生被动地“学”变成主动地“学”。教师的“引”是前提,学生的“会学”是升华,是创新。因此,在课堂教学中十分注意“引”的设计,一是引要奇异,使学生对学习内容感到有趣,从而创设学生创造性学习的兴趣;二是引要贴近学生的生活实际,使学生对学习内容感到并不深奥,从而调动学生学习的积极性和主动性;三是引要符合学生现有的知识水平实际,使学生对学习内容,容易受到启发,创设学生勤于动脑,富于想象的氛围;四是引的深度、广度、坡度要适宜,从而使学生对学习内容,喜欢从问题相关的各个方面去积极思考,寻根挖底等等。
在设计好教师“引”的前提下,我还十分注意学生“学”的设计:一是让学生带着教师“引”的问题自学,其目的是使学生对新知识达到懂和会,即求“会”,这是培养学生创造才能的前提和基础;二是带着“为什么”去自学,其目的是使学生通过不同的理解,达到对新知识解决问题办法的认同,即求“同”,这是培养学生创新意识的过渡;三是带着“这是唯一的吗”质疑去自学,其目的是培养学生于无疑处见有疑,从而激发学生从不同角度、不同侧面去寻找解决问题的其它途径和办法,即求“新”,这是学生创新意识的萌芽。当然,学生创新意识的形成,不是一题一课所能完成的,只有坚持持久,正确处理好教与学的关系,学生创新意识是会逐步形成的。
1.3在教学练习中,设计问题要兼顾全体。学生的创新意识,是在“会学”中逐步形成的,而创新意识的巩固与提高,则是在教学练习中得到保证的。因此,我在教学中十分注意练习题的设计:一是层次分明,既要设计出基础知识和基本技能的巩固题,又要设计出培养学生创造才能的发展题;二是形式要新颖有趣,就是说练习题既要来源于学生的生活,又要高于学生的生活,使学生乐学善思;三是条件要发散多变,使学生认识到,结果不能垂手可得,需要认真思考,反复实践才能解决;四是适当运用一题多解等等。总之既不能只顾学习好的也不能只顾学习差的,要顾及全体学生能力,使学习差的能吃饱,学习好的也不能饿着,也能满足他们的需要。
学生的创新意识的培养,要贯穿于整个教学活动之中,我们也要不断认真研究和探索。
2.在学生创新意识的基础上,还要注意培养锻炼学生的发散思维能力和习惯
2.1教学过程中,通过创设具体情境来启发学生的思维。具体问题情境具有强烈的吸引力,能激发学生对学习的兴趣,引发学生的创新性思维,因此,我在教学过程中总是有意识地创设具体情境,从而激发学生的探索新知的欲望,引导他们体验解决问题的快乐,达到促进创新性思维的发挥。
例如:在教学“小数的性质”时,我设计了这样一个问题,6、60、600后面填上适当的单位,并用等号将它们连接起来?问题一出学生的积极性被调动起来了,议论纷纷。有的说加上元、角、分可得到6元=60角=600分,有的说加上米、分米、厘米可得到6米=60分米=600厘米,这时我提出能不能用同一单位把上面的各式表示出来呢,于是学生就得出6元=6.0元=6.00元,6米=6.0米=6.00米,对于这几个数之间是否相等正是我们要学习的“小数的性质”,这样的情境创设,形成悬念,培养了学生对知识探究的能力和习惯。
2.2复习巩固时,倡导学生一题多解来诱发学生的思维。巩固复习时,我经常通过将应用题的条件和问题加以改变,让学生能够举一反三、触类旁通,然后更多的是强调计算题中的一题多解,达到诱导学生进行发散性创新思维的目的。
‘肆’ 如何培养小学生数学发散思维
浅谈在数学教学中如何培养小学生的发散思维长期以来,小学数学教学以集中思维为主要思维方式,这对于基础知识、基本技能的掌握是必要的,但对于小学生学习数学兴趣的激发、智力能力的发展,特别是创造性思维的发展,显然是不够的。而发散思维却正好反映了创造性思维“尽快联想,尽多作出假设和提出多种解决问题方案”的特点,因而成为创造性思维的一种主要形式。在小学数学教学的过程中,要有意识地培养学生的发散思维能力。一、在诱导乐于求异的心理倾向中,培养学生的发散思维能力。赞可夫说过:“凡是没有发自内心求知欲和兴趣的东西,是很容易从记忆中挥发掉的”。赞可夫这句话说明了发散思维能力的形成,需要以乐于求异的心理倾向作为一种重要的内驱力。教师妥善于选择具体题例,创设问题情境,精细地诱导学生的求异意识。对于学生在思维过程中时不时地出现的求异因素要及时予以肯定和热情表扬,使学生真切体验到自己求异成果的价值。对于学生欲寻异解而不能时,教师则要细心点拨,潜心诱导,帮助他们获得成功,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时,就会能动地作出“还有另解吗?”“试试看,再从另一个角度分析一下!”的求异思考。事实证明,也只有在这种心理倾向驱使下,那些相关的基础知识、解题经验才会处于特别活跃的状态,也才可能对题中数量作出各种不同形式的重组,逐步形成发散思维能力。二、在诱导变通中,培养学生的发散思维能力。变通,是发散思维的显着标志。要对问题实行变通,只有在摆脱习惯性思考方式的束缚,不受固定模式的制约以后才能实现。因此,在学生较好地掌握了一般方法后,要注意诱导学生离开原有思维轨道,从多方面思考问题,进行思维变通。当学生思维闭塞时,教师要善于调度原型帮助学生接通与有关旧知识和解题经验的联系,作出转换、假设、化归、逆反等变通,产生多种解决问题的设想。如对于下面的应用题:王师傅做一批零件,8天做了这批零件的2/5,这样,剩下的工作还要几天可以完成?学生一般都能根据题意作出(1-2/5)÷(2/5÷8)的习惯解答。此时,教师可作如下诱导:教师诱导性提问学生求异性解答①完成这批零件需要多少天8÷2/5-8或8÷2/5×(1-2/5)②已做零件数是剩下零件数2/5÷(1一2/5)的几分之几?③剩下零件数是已做零件数(1-2/5)÷2/5的几倍?④能从题中数量间找出相等方程解法(略)关系吗?⑤从题中几种量中能判断出比例解法(略)比例关系吗?通过这些诱导,能使学生自觉地从一个思维过程转换到另一个思维过程,逐步形成在题中数量间自由往返调节的变通能力,这对于培养学生的发散思维是极为有益的。三、在鼓励独创中,培养学生的发散思维能力。在分析和解决问题的过程中,学生能别出心裁地提出新异的想法和解法,这是思维独创性的表现。尽管小学生的独创从总体上看是处于低层次的,但它却蕴育着未来的大发明、大创造,教师应满腔热情地鼓励他们别出心裁地思考问题,大胆地提出与众不同的意见与质疑,独辟蹊径地解决问题,这样才能使学生思维从求异、发散向创新推进。如解答“某玩具厂生产一批儿童玩具,原计划每天生产60件,7天完成任务,实际只用6天就全部完成了。实际每天比原计划多生产多少件玩具?”一题时,照常规解法,先求出总任务有多少件,实际每天生产多少件,然后求出实际每天比原计划多生产多少件,列式为60X7÷6-60=10(件)。而有一个学生却说:“只须60÷6就行了”。他理由是:“这一天的任务要在6天内完成所以要多做10件。”从他的回答中,可以看出他的思路是跳跃的,省略了许多分析的步骤。他是这样想的:7天任务6天完成,时间提前了1天,自然这一天的任务(60件)也必须分配在6天内完成,所以,同样得60÷6=10,就是实际每天比计划多做的件数了。毫无疑问,这种独创性应该给予鼓励。独创往往蕴含于求异与发散之中,经常诱导学生思维发散,才有可能出现超出常规的独创;反之,独创性又丰富了发散思维,促使思维不断地向横向与纵向发散。四、在多种形式的训练中,培养学生的发散思维能力。在小学数学教学过程中,教师可结合教学内容和学生的实际情况,采取多种形式的训练,培养学生思维的敏捷性和灵活性,以达到诱导学生思维发散,培养发散思维能力的目的。1.一题多变。对题中的条件、问题、情节作各种扩缩、顺逆、对比或叙述形式的变化,让学生在各种变化了的情境中,从各种不同角度认识数量关系。如,有一批零件,由甲单独做需要12小时,乙单独做需要10小时,丙单独做需要15小时。如果三个人合做,多少小时可以完成?解答后,要求学生再提出几个问题并解答,可能提出如下一些问题:甲单独做,每小时完成这批零件的几分之几?乙呢?丙呢?甲、乙合做多少小时可以做完?乙、丙合做呢?甲单独先做了3小时,剩下的由乙、丙做,还要几小时做完?甲、乙先合做2小时,再由丙单独做8小时,能不
‘伍’ 小学生数学思维能力如何培养
孩子对数学的学习并不是为了拥有多少数学知识,而是在数学学习的过程中,让孩子可以发散思维,提高数学素养,用数学思维去分析、解决实际问题。数学思维能力的培养可以从以下点入手:
1、从实际需求出发
2、从问题的突破口出发
3、从实际的案例出发
4、结合逻辑思维来做训练。
5、鼓励孩子多提问
‘陆’ 小学数学如何培养学生的数学思维能力
孩子对数学的学习并不是为了拥有多少数学知识,而是在数学学习的过程中,让孩子可以发散思维,提高数学素养,用数学思维去分析、解决实际问题。家长需要帮助孩子从小就开始锻炼数学思维能力,这有助于孩子在学龄前后的智力开发,并且能够影响孩子在今后的数学学习能力,直接影响孩子的数学成绩。那么怎样提高小孩子的数学思维能力呢?
1、从实际需求出发:比如说家人去买菜用哪种方式比较快捷到达目的地,又运用哪些方法可以省钱。这些实际的生活非常能够让孩子思考,孩子也容易理解,往往数学思维在不知不觉中形成了 。
2、从问题的突破口出发:比如说方程类的解答,孩子遇到某个题目觉得很繁琐,利用方程就会很简单,当孩子遇到某些难题难以解决的时候,总会需要找到突破口,比如逆向思维、对比思维等,这些突破口的过程,本身就是一场数学思维。
3、从实际的案例出发:有很多实际的典型案例,这些案例在课本上都有,利用这些案例,看看书本上是怎么分析的,哪怕孩子不能独立去完成,背会本身也有好处,可惜很多人只会说束手无策,导致越来越恶化。
4、结合逻辑思维来做训练。事实上数学思维本身就是一种逻辑思维,并且两者相辅相成。家长可以帮助孩子选择一些书籍,亦或是相关的逻辑训练工具,并且总结逻辑给孩子带来的好处等等, 用这些来指导数学思考方式。
5、鼓励孩子多提问:不要抑制孩子在学习过程的提问,这种提问和好奇是孩子学习的动力,将知识点与孩子年龄段能接受的方法告诉孩子才是最重要的,需要多加以引导。
‘柒’ 小学数学如何培养学生的发散性思维
小学的学生要学会散发性的思维,其实也就是让学生懂得学习之后举一反三,我们可以通过更多的一些学习的事例,解题的方法一题多解的形式去促进学生学习
‘捌’ 小学数学如何进行思维能力培养
思维能力是一个人的核心能力。孩子的思维是后天形成的,水平不断提高。孩子思维处于直观行动思维向具体形象思维的发展过程中,抽象 逻辑思维 已经开始萌芽,具备了进行 思维训练 的基础。下面我为你整理小学数学教学如何进行思维能力培养,希望能帮到你。
一、选准知识点,营造创造性思维的情境
教学中要使学生既长知识,又长智慧,一定要遵循学生的认知规律,重视学生获取知识的思维过程。小学 数学圆面积计算公式,一般是通过由教具的直观演示对圆形面积的割补转化,推导出圆面积计算公式。这对于 小学生来说,无疑是一次具有创造性的思维过程。
学习圆面积计算 方法 时,学生已掌握了长方形面积计算公式,有了利用割补学平行四边形、三角形面积 计算方法的初步 经验 ,教师的主导作用就应体现在帮助学生树立假设,一步一步地展开推理论证,找到解决问 题的方法。教师可设计四个思考题:
1.能否将圆转化为已学过的图形?
2.这个长方形的长和宽与圆的周长和半径有什么关系?
3.如果圆的半径是r,这个长方形的长和宽各是多少?
4.依据长方形面积计算方法,整理出圆面积计算公式。
通过上述四个问题的思考,启发学生的思维,促使学生主动地发现规律,掌握规律,创造性地获取新知。
二、巧用原例题,激发学生创造性思维意识
素质 教育 的核心是创新,培养学生思维的个性化、多元化。课堂教学是素质教育的主 渠道 ,挖掘教材中蕴 含的有利于进行创造性思维训练的知识点,指导学生学会发现问题,激发学生解决问题的强烈欲望。
培养学生创造性思维意识过程可归纳为:
1.创设情境:教师对现行教材进行认真分析,整理出那些有利于训练学生创造思维方法和创造思维能力的 知识点,并在教学中营造出一种宽松和谐的、师生密切交往的教学氛围。
2.建立假设:精心设计教案,适时引出假设,确定解决问题的方向。
3.分析、酝酿、综合:分析材料,酝酿思路,提出新的想法。
4.验证、求得新知:采用 其它 方法验证结论是否正确。
例如,学生在掌握圆柱的体积计算方法后,利用原例题,变原有条件为“把一个直径20厘米的圆柱,沿底 面直径从上到下分成若干等份,然后拼接成一个和它体积相等的长方体,这个长方体的表面积比原来的圆柱表 面积增加7平方厘米,长方体的体积是多少?”
此例为学生提供了一个真实的经验情境。学生通过观察会发现,圆柱变形后,新形体和原形体等积;新形 体的长恰好是圆柱底面周长的 1/2,新增表面积7平方厘米正好是圆柱体变形后所得长方体左右面面积之和。 如此分析探究之后,学生很快会得出这个长方体(即变形前圆柱体)体积为“长方体左(右)面积×长方体的 长”。此时学生的思维方向很明确,且面对足够的思维空间,具有进行迁移思维的良好氛围,适合不同思维水 平的学生思考。因为长方体左(右)面积=圆柱的底面半径(r)×圆柱的高(h)=hr;长方体的长=1/2圆 周长=πr。 所以, 圆柱体变形后得到的新的长方体的体积为“长方体左(右)面积×1/2圆周长”,即“h r·πr”,整理后得V=πr[2]·h。通过上述思维活动加深了学生对圆柱体计算公式推导过程的理解,锻炼了 学生思维的独立性与敏捷性,创造性地应用已有知识解决了新问题。
三、举一反三,培养学生思维的创造性
教师应掌握归纳问题的策略,在众多问题中,如能筛选提炼出适合学生研究的、有助于学生自己探究、思 考的问题,将对学生的自学产生关键作用。由于学生的认知结构、理解能力处于不同的层次,知识的获得并非 一次到位,可根据教学内容再组织一次实践,培养学生思维的广阔性与深刻性。
练习的设计要有层次、有梯度,难易适度。例如,学生学习了按比例分配的知识,完成了一定数量的基本 习题后,教师出示习题一:已知一个长方形周长是18厘米,长与宽的比是5:4,求这个长方形的面积?学生往往 将周长和按5:4分配所得的数值, 误认为是长方形长与宽的值。此时教师应启发学生思考:按5:4 分配长与宽 与长方形的周长有什么关系?这样激活学生的思维点,使学生懂得按一定的比例分配是以它特定的、相对应的 数量为前提的,从而加深学生对比例分配知识的理解。
在此基础上教师出示习题二:一个长方体长、宽、高的比是5:4: 2,它们的棱长和是44厘米,请你计算出 这个长方体的体积。
由于学生的思维点已被激活,他们将会进行较为缜密的思考、推理,最终寻得正确的解题方案。这一学习 过程,无疑是引导学生进行了一次创造性思维的有益尝试。
上述教学环节的设计,目的在于学生通过动手、动脑、动口,采用观察比较、分析归纳、假设演绎等学习 手段,由具体到抽象,由特殊到一般,归纳 总结 出较为完善的知识,促使学生全面理解、融会贯通,培养学生 初步的逻辑思维能力,促进学生思维品质的提高。
在小学数学教学中,重视对学生创造思维能力的培养,这是时代的要求。教师要认真挖掘教材中的创造思 维因素,精心设计教学过程,促使学生的创造思维能力不断得到发展和提高。
思维训练相关 文章 :
1. 思维训练
2. 逻辑思维训练题目及答案
3. 逻辑思维训练500题
4. 经典逻辑思维训练题
5. 自闭症孩子的教育思考:浅谈思维训练
‘玖’ 在小学数学教学中如何培养学生的思维能力
(一)运用多媒体教学手段渗透数学思想:在小学阶段,数学思维能力的培养,要坚持寓教于乐的原则。通过多媒体和网络平台收集并呈现有趣的数学解决实际问题的内容。例如,将动画片中的有关数学的内容剪辑下来,在课前或者课间播放,既能够让学生的精神得到放松,又能够让学生在观看动画的时候感受数学的实用性。
(二)套构的方式强化数学模型:套构的方式与类比的方法类同,是根据两类或两个对象的相似或相同点,推断他们其他方面也相似或相同的思想方法是自特殊至特殊的方法在解决数学问题时。利用类比思想可发现新问题,所得结论虽具有一定的偶然性但却可为该问题的深入研究提供线索为思维指明方向这对于问题的最终解决极为有利放而类比是数学发现中最基本、最重要方法在小学数学教学中教师应在结构特征上、数量关系上、算理思路与思想内容上进行类比思想的渗透教学。例如,在加法交换律的学习中,可以充分利用类比的方式。算式1+2+3+4+5+6+7+8+9+10=?这个题的解法有很多种,可以将各个加数依次相加,最终得出结构。也可以用加法交换率将算式进行加数上的调整。原式=1+2+3+4+5+6+7+8+9+10=(1+9)+(2+8)+(3+7)+(4+6)+5+10=10+10+10+5+10=55。套构加法交换率在连加算式中的应用,能够使得计算更加简便。套构既定数学定律或者定律,不但有利于学生巩固所学的知识,而且能够让学生养成用数学模型来解决实际问题的意识。这样有利于学生后续数学建模思想的学习和研究。
(三)逆向思维的方法:逆向思维是发散式思维的一种其基本特征是从已有思路的反方向去思索问题这种思维形式反映了思维过程的间断性、突变性、反联结性是对思维惯性的克服其优点在于首先有利于克服惯常思维的保守性,开拓新的数学领域其次有利于纠正惯常思维所造成的错误认识,开辟数学新方向最后有利于排除惯常思维过程中。逆向思维的方法多用于应用题的解答。例如,张兰在暑假阅读文学名着《三国演义》,在第一周,他阅读了一本书的一半少40页,在第二周,他阅读了剩下的一半多10页,第三周他阅读了30页,至此全部看完。问题是《三国演义》这本书一共多少页?利用逆向思维来解答,第二周阅读了剩下的一半多10页,第三周阅读了30页看完,即30页加10页正好是剩下的一半,也就是40页;剩下的书页数是80页;第一周阅读了书的一半少40页,即比80页少40页,也就是第一周阅读了40页。所以这本书总共是80页加上40页,等于120页。逆向思维这种数学思维的好处在于可以根据问题和题中已知的部分条件来还原出潜在的条件,运用还原出的条件可以继续向前堆。如此这般环环相扣,最终就能解决问题。
(四)联系生活创设情境:人们在学习比较难的知识时,其最大的动力是能够解决自己的实际问题。为了培养学生的数学思维,可以通过将数学内容与学生日常生活相联系的方法。这样学生在情境中可以意识到如果解决这个问题会给其生活带来益处,所以要努力学生,最终养成用数学思维解决问题的好习惯。相反,在数学课堂上,联系生活情景,能够让孩子们利用生活常识和生活经验更好地去理解数学解题方法。例如,关于三角形具有稳定性的教学内容中,教师可以让学生用三个磁扣将挂图固定在黑板上,为了配合教学活动,可以增加挂图的重量,这样可以使得三个磁扣平行放置无法稳定住挂图。学生通过实验发现,只有三个磁扣组成三角形时才能够稳定挂图。教学内容讲授结束后,还要引导学生联系生活实际。比如,用三个钉子来固定一个镜框,钉子的位置怎么安排最合理。
‘拾’ 如何在数学课堂中培养学生的发散思维
古人云:学起于思,思源于疑。数学课堂教学中,教师要善于设疑,创造“愤”和“悱”的思维情境,培养学生的思维能力;在数学思维能力培养方面,尤为重要的是对学生发散思维能力的培养。发散思维又名求异思维,它是创新思维的一种形式,又是思维品质——思维深刻性、广阔性、灵活性、敏捷性和逻辑性的综合体现。那么,数学课堂教学中如何培养学生的发散思维能力呢?笔者认为在数学课堂教学中教师要努力做到以下几个方面。
一、激发学生打破常规,转换角度思考
趣题能把孩子们带进富有挑战性的数学天地,尤其是按照常见的数量关系,用常用的方法求解都不能奏效的“趣题”或数学问题,此路不通,另辟蹊径,不妨引领学生换个角度去思考,或许能有“柳暗花明又一村”之效。
例如,打破常规求面积:已知平行四边形ABCD的面积是32平方厘米,E、F分别是AB和BC的中点,求四边形AEFC的面积。
初看,这道题难以解答,教师引发学生打破常规思考:
虽然可以知道四边形AEFC是梯形,但上下底和高都不知道,也不知道三角形EFB的面积,所以无法直接计算梯形面积,也不能用整体减部分计算面积。我们必须调整思路,变换角度思考。
在图形中添两条分别平行于AB和BC的线段(如左图)。三角形ABC被分为面积相等的四部分,梯形AEFC占其中的三份。只要知道三角形ABC的面积,就可以求出梯形AEFC的面积,解之为:
32÷2÷4×3=12(平方厘米)
二、引导学生从不同角度来观察问题
新课程教材中,设置有大量的这方面内容,尤其是“数学课本中的图案”。观察是进行思维的基础和源头,观察是一种有目的、有意识的知觉,观察要全面反映事物的本质。这就要求教师要引导学生从不同角度来进行观察,得出对一事物全面性的全方位的认识,才能进行全面、正确的思维活动。从不同角度来进行观察,利于培养学生灵活处理问题、多角度思考的能力。如:现行数学教材中的位置问题、数对问题、视图问题、统计问题以及几何中的数形结合问题等,都要引导学生多角度观察和思考,从而培养学生的发散思维能力。
三、鼓励学生敢于质疑权威、怀疑现成的结论
教学的任务不仅仅是传授知识,更重要的是生成知识。如果迷信权威,迷信课本现成的结论,人类就永远不会前进,社会就不会进步。因此在教学中教师不要局限学生的思维,应鼓励学生敢于打破常规,进一步思考,甚至看能不能推翻现成的结论。不要让学生以一个思维模式进行思考,而要引导学生善于从不同角度来分析问题,培养学生的发散思维。
例看规律填数:2,4,8、 、 、 、
教师给出的参考答案是 16 、 32 、 64 、 128 。
引导学生分析时找规律:21,22,23……即“规律”为:2n(即为通项公式),由此得上解。若作另一解分析:
1×0+2,2×1+2,3×2+2,……即“规律”为:n(n-1)+2(即为通项公式),由此得到:2,4,8,14,22,12,44,……
纵观以上对比分析,此题只有写成:①2,4,8,…,2n,……;或2,4,8,16…; ②2,4,8,…,n(n-1)+2,…或2,4,8,14,…
这样,才是确定的数列(即“规律”)。要有唯一解,它将原题改为:
①2,4,8,16, , , , ;
②2,4,8,14, , , , 。
总之,课堂教学中培养学生发散思维能力,要从现实性、基础性、思考性、趣味性这四个维度来创设有效的思维情境,并把握以上训练方法,同时,教师在数学课堂教学中要以“点燃有效兴趣”为起点,以“激活知识原型”为支点,以“激扬数学思考”为重点,努力挖掘教材的教育因素,积极稳妥地进行发散思维训练,课堂教学将会“熠熠生辉”,学生的发散思维能力就会大大提高。