1. 求连续型随机变量的数学期望的定义,最好把那几种特殊的连续性的随机变量都给列出来,谢了.
连续型随机变量的数学期望就是xf(x)在R上的积分,f(x)为密度函数
几种特殊的连续性的随机变量:
1.均匀分布
f(x)=1/(b-a) a<x<b Or f(x)=0 x=其他
Ex=(a+b)/2
2.指数分布
f(x)=r*e^(-rx) x>0 or f(x)=0 x=其他
Ex=1/r
3.正态分布
f(x)=(1/δ(2*pi)^(1/2))*e^(-((x-μ)^2)/2δ^2)
密度函数很复杂,很不清的话可以去网上再查,因为这里打不出公式的样子
Ex=μ
2. 数学期望怎么求
求解“数学期望”主要有两种方法:
只要把分布列表格中的数字 每一列相乘再相加 即可。
如果X是离散型随机变量,它的全部可能取值是a1,a2,…,an,…,取这些值的相应概率是p1,p2…,pn,…,则其数学期望E(X)=(a1)*(p1)+(a2)*(p2)+…+(an)*(pn)+…;
如果X是连续型随机变量,其概率密度函数是p(x),则X的数学期望E(X)等于
函数xp(x)在区间(-∞,+∞)上的积分。
3. 连续函数求期望的公式
连续函数求期望的公式如下:
E(X) = X1*p(X1)+ X2*p(X2)+……+ Xn*p(Xn) = X1*f1(X1)+ X2*f2(X2)+……+ Xn*fn(Xn)。
X;1,X;2,X;3,……,X。
n为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xn)。
数学期望描述的是一个随机变量取值的集中位置,也就是随机变量的概率加权平均值。只有在大量试验基础上才能体现出来的一个规律性。
期望值是基础概率学的升级版,是所有管理决策的过程中,尤其是在金融领域是最实用的统计工具。某个事件(最初用来描述买彩票)的期望值即收益,实际上就是所有不同结果的和,其中每个结果都是由各自的概率和收益相乘而来。
4. 连续型随机变量的数学期望 要详细过程
5. 连续性二维随机变量数学期望
①求E(X),先求出X的边缘分布密度函数fX(x)。根据定义,fX(x)=∫(-∞,∞)f(x,y)fy=∫(0,∞)e^(-x-y)dy=[e^(-x)]∫(0,∞)e^(-y)dy=e^(-x)。
②按定义求期望值。E(X)=∫(0,∞)xfX(x)dx=∫(0,∞)xe^(-x)dx=1。
E(X+Y)=∫(0,∞)∫(0,∞)(x+y)e^(-x-y)dxdy==∫(0,∞)∫(0,∞)xe^(-x-y)dxdy+∫(0,∞)∫(0,∞)y e^(-x-y)dxdy=2。
E[e^(-x)]=∫(0,∞)[e^(-x)]fX(x)dx=∫(0,∞)e^(-2x)dx=1/2。
供参考。
6. 连续性的随机变量的求数学期望 E(X²)怎么求
要求EX^2,只知道EX还不够,至少要知道x是如何分布的,也即它的分布函数或者概率密度函数。
若X~N(1,3),则Dx=3,由DX=EX^2-(EX)^2及EX的值可以算出EX^2。若X~N(1,3),Y=3X+1,EY=E(3X+1)=3EX+1=3*1+1=4,DY=D(3X+1)=3^2*DX=9*DX=9*3=27,所以Y~N(4,27)。
3X与X+X+X没有区别。Z=X+Y的密度函数也要根据X,Y的概率密度f(xy)来求,一般用作图法计算,先算出分布函数F(Z),再算密度函数f(z),也可以直接积分计算:f(z)=将f(x,z-x)对x积分,这时的难点是确定好积分上下限。
如果随机变量X的所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任一点的随机变量。例如,一批电子元件的寿命、实际中常遇到的测量误差等都是连续型随机变量。
(6)连续变量怎么求数学期望扩展阅读:
能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量与连续型随机变量也是由随机变量取值范围(或说成取值的形式)确定,变量取值只能取离散型的自然数,就是离散型随机变量。
x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3分钟、5分钟7毫秒、7√2分钟,在这十五分钟的时间轴上任取一点,都可能是等车的时间,因而称这随机变量是连续型随机变量。
7. 什么是数学期望如何计算
数学期望是试验中每次可能结果的概率乘以其结果的总和。
计算公式:
1、离散型:
离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:
8. 数学期望的计算公式,具体怎么计算
公式主要为:
性质3和性质4可以推到到任意有限个相互独立的随机变量之和或之积的情况。
参考资料:数学期望-网络
9. 连续型随机变量x密度函数求期望方差
直接根据期望与方差的计算公式就可以如图求出期望是1,方差是1/6。
10. 连续性随机变量的期望
定义:设连续型随机变量 [公式] 的概率密度函数为 [公式] ,如果 [公式] ,则称: [公式] 为 [公式] 的数学期望,简称期望。
如果 [公式] 是实变量的实值函数,并且 [公式] ,则可以证明(需要较深的数学知识): [公式] .
笔者感到疑惑,到底需要什么较深的数学知识?先自己尝试一下证明,看会遇到哪些困难吧。令: [公式] , [公式] 的概率密度函数为 [公式] .则根据定义: [公式] ,因此只需证明 :[公式]。但是这是困难的,因此寻找 [公式]并非易事。这时候老师提示,可以先考虑一些特殊情况来做一些形式推导。比如说,先考虑 [公式] 单调递增且可导的情况:
设 [公式] 的分布函数为 [公式] ,则根据定义 :[公式](利用单调增可逆成功将 [公式] 转化为 [公式] 此时: [公式] )
因此: [公式] 根据复合函数求导的链式法则上式即: [公式] .证毕。
然而,这仅仅是一小类函数,对于一般的可导函数,在老师的提示下,我发现也可以通过划分区间的方法,将函数分成若干个单调区域来处理,划分区间,自然和积分的定义联系上了。
[公式] 其中: [公式]
[公式]
[公式] [公式]
[公式]
[公式]
[公式]
[公式]
至此,在 [公式] 可导的情况下我们证明了 [公式] 成立。