导航:首页 > 数字科学 > 怎么数学解决问题从难变意解题方法

怎么数学解决问题从难变意解题方法

发布时间:2022-09-14 01:17:49

㈠ 数学解决问题的策略

在解题过程中,运用画图的方法,画出与题意相关的示意图,借助示意图来帮助推理、思考,这是小学数学解决问题中最常用的一种策略。

常见的画图方式有:线段图、集合图等。
将疑难问题的文字“翻译成图”,能够立竿见影地理清思路,找到解题策略。

例:某班有45位同学,其中有30人没有参加数学小组,有20人参加航模小组,有8小组都参加了。问:只参加一个小组的学生有多少人?

分析:画出集合图。
方框表示全班所有人。区域①表示只参加数学小组的同学。区域②表示只参加航模小组的人。区域③表示同时参加数学、航模两个小组的人。区域④表示两个小组都没有参加的人。

图片、图形转达信息的效率要远远高于文字和语言。
利用集合图将复杂的文字概念关系转化为直观的图,可以帮助孩子快速理清各种量之间的逻辑关系,提高解题效率。

转化策略
转化也是小学数学解决问题中常用的一种方法,能把较复杂的问题转化为简单问题,能把未知的问题变为已知的问题。

例:妈妈买了2千克柑橘和5千克生梨,共花了28.6元。每千克柑橘的价格是生梨的4倍,每千克柑橘和生梨各多少元?
分析:“每千克柑橘的价格是生梨的4倍”,这句话就是转化的条件。我们可以这样想:买1千克柑橘的价钱可以买4千克生梨,那么买2千克柑橘的价钱可以买2×4=8千克生梨。所以总共花了28.6元相当于买了(8+5)千克生梨所花的钱。通过转换,问题就得以解决了。

列表策略
列表策略,又叫列举策略。是将问题的条件信息用表格的形式列举出来,便于从中发现问题、分析数量关系,从而排除非数学信息的干扰,同时也便于找到解决问题的方法。

例:有1张五元纸币,2张两元纸币,8张1元纸币,要拿9元钱,有几种拿法?

㈡ 数学解决问题的一般步骤

第一,从问题出发。解决数学问题,首先要从理解数学问题开始,没有正确的理解就没有正确的解答。所以说要从问题出发,分析问题的基本条件,基本要求,梳理基本脉络,形成基本观点。这就要求学生要特别注重语言的训练,包括听说读写等能力的训练,以实现对题目的充分理解。

第二,从规律出发。数学问题都是有一定规律可遵循的,发现了规律可以事半功倍,发现不了规律只能一头雾水。如何发现规律?首先要认识规律。数学的规律都是隐藏在各类问题之下的,一般很难发现。这就需要学生日常养成专心听讲的良好习惯,因为这些规律性认识都是经过老师认真备课,精心组织耐心讲授出来的。课时要会做笔记,做好笔记,课下做好复习,认识,理解规律,最好能够自主的去发现规律总结规律。

第三,从结果出发。所谓解决数学问题,在小学和中学阶段就是指解决数学题目。数学题目有一个特点,就是一定有一个疑问,有一个答案。为了解答,我们需要认真分析问题,即所谓的有的放矢。从结果出发反推问题所在,从结果中发现数学冲突和矛盾,在结果中理清解题思路。

第四,从逻辑关系出发。解决数学问题的实质是逻辑关系的理顺,学生需要从题目中找到各种数量,变量,并建立起这些量之间合理的逻辑关系和数学解释。罗辑思维能力提升的方法很多,主要是专项逻辑训练,数字规律认识,图形类型归纳,数形结合问题等等。在具体的解题过程中,我们需要抓住变量,还要抓住不变量,通过这些量之间的变化关系得出题意中的逻辑关系,进而最终求的结果。

㈢ 遇到数学难题,怎样解决

同学们,当你们遇到数学难题时是否愁眉苦脸,把它放弃?或者急于寻求他人的帮助?以前的我也是这样,如今在老师和爸爸妈妈的帮助下,已经彻底改掉了以往的思想,可以独立的解决数学难题了。现在,我就把我解决数学难题的做法告诉大家,和大家一起分享。对自己充满信心,这是前提条件。有的同学一遇到课本里面带有“*”字号的题目连看都不看,认为这是提高题肯定很难,看了也没用,反正不会做。俗话说:“镜子越擦越明,脑袋越用越灵。”如果你不去认真思考这道难题,就白白浪费了一次锻炼脑袋的机会。长久下去,脑袋就会变得迟钝、缓慢。如果你对自已有信心,你就会认真去思考难题,你的脑袋就会变得灵活起来。所以,解决难题时必须对自己有信心,这样才能考虑后面的解决方法。当然,不止是对自己有信心,更重要的是得掌握一定的基础知识,对书上的概念、定义、公式一定要熟记、理解、掌握。这些基础知识可是对解决数学难题起到关键作用。当你碰到一道数学难题时首先要认真审题,弄清题意。也就是当我们看到题目时,要仔仔细细阅读清楚,把题意理解透了再动笔,这样解题就不容易出错。“磨刀不误砍柴工”说的就是这个道理。其次是考虑采用什么方法解题,下面我就把我采用的解决应用题的几种方法总结分析如下:(一)线段图法:就是根据题目中所给的已知条件,画出线段图,题目中的数量关系就直观的表现在纸上,能启发我们思考沟通“已知”和“未知”的联系,帮助我们解答问题。(二)综合法:对多步应用题从应用题的已知条件出发,选出两个有直接联系的已知条件,组成一个简单应用题,求出答案;把这个求出的答案当作一个新条件,然后同另一个有联系的已知条件,组成一个新的简单应用题,再求出答案;这样一步一步地推究下去,最后一个简单应用题的问题,就是这个应用题的问题。如我们书上常用“知道了----和-----,可以求出-----”这样的提示语来表达这种思路。(三)分析法:从应用题最后的所求问题出发,找出解答这个问题所需的两个条件,并对照题目里的条件,看哪个是已知的,哪个是未知的;把这个未知的条件当做新问题,找出解答新问题所需要的两个条件,再对照题目,看是不是都是直接的已知条件;直至找到全部是已知条件为止。书上常用“要求-----,先要求出-----”这样的提示语来表达这种思路。最后是检查,写出答案。这也是极其关键的一步。要是方法懂得了,答案写错了,那也是前功尽弃,太可惜了。学习需要一步一个脚印,解决数学难题也是如此,不仅要有好的解题方法,更要掌握基础知识,没有任何捷径。古人云:“书山有路勤为径,学海无崖苦作舟。”只要你有了牢固的基础知识,再加上掌握了正确的解题方法,任何难题都能迎刃而解。对我有帮助!

㈣ 如何解决数学难题

你的说法是对的。
学习好的同学其实就是平时做的题型多,了解各种题型的解法,才能自己独立完成各种难题。
你可以向成绩好的同学请教一下学习的具体方法。
如果他们不太愿意向你介绍方法,你可以多留意一下他们是怎么学习的。
但是,不论怎样的学习方法,都离不开多练、多总结。
首先要把课本的内容弄懂,搞清楚各个知识点之间的联系。将各个知识点对应的题型做上一遍,应该说这部分的内容就算学透了。当然了,也不是说要搞题海战,但是,要掌握各个知识点,没有练到一定的程度,是不可能掌握好的。做题后,也要反思一下,这道题所涉及的知识点是什么?出题的人为什么要这样出?坚持做下去,你会有很大的提高。
所以,平时要多积累,多思考。

㈤ 初二学生遇到数学中难一点的题目就不会做,这是什么原因如何解决这问题

没有独立思考的能力,对公式概念不熟悉,没有读懂题目,不会活学活用。有的学生学数学的时候遇到了困难,只会做简单的,不会做难的,就是因为缺乏勇气,不敢挑战自己。

心里感到很胆怯,不想去尝试解出这道题。

有的学生没有耐心,看到题目就想直接做,没有读懂题目就开始做题,就容易走进死胡同。遇到难一点的题就不会做了,其实就是学生的分析能力差,没有认真读懂题目的意思。只要细心一些,认真去分析题目的意思,就会有解题思路。

不会活学活用。

学数学千万要学会活学活用,做题不能太保守,要懂得灵活掌握。做数学题要尝试用不同的方法来解出答案,时间长了就会培养对数学的兴趣,只要爱上学数学,解题就不再是困难的事。做数学题的时候,要学会找到巧妙的方法来解决问题,只有多做题,才能积累做题的经验,遇见难题就不会退缩了。

㈥ 高中数学解题方法有哪些

1、配方法
把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

㈦ 解决数学问题的常见思路方法有哪些

1、公式法:将公式直接运用到问题中,常用在代数问题中。解决该类问题必须记好数学公式。
2、逆推倒想法:由问题的结论推理到问题中的条件,常用在几何问题中。解决该类问题必须掌握好几何中的定义、公理、定理和推论等。
3、数形结合法:将问题转化成图形进行解决,常用在代数中的应用题中。

㈧ 如何上好小学数学中"解决问题"的教学

解决问题的教学内涵丰富,如何让学生喜欢它,这是我们当前所面临的问题。如何上好小学数学解决问题教学的几点体会
《基础教育课程改革纲要》中指出:改变课程实施中过于强调接受学习,死记硬背,机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生收集和处理信息的能力。《课程标准》明确指出:“学生是学习的主人。”前苏联教育家苏霍姆林斯基也曾说过:“人的心灵深处,总有一种把自己当作发现者、研究者、探索者的固有需要,这种需要在小学生精神世界尤为重要。”长期束缚在教师、教材、课堂圈子里,不敢越雷池半步的学生,在今天更需要我们极力改变学习方式,而探究即为自主学习的方式。因此,要讲究自主探究的学习策略,使之成为发现者、研究者、探索者,从而把他们心灵深处被压抑的个性释放出来。数学解决问题教学更能充分发挥学生自主探究学习的能动性。
一、引导发现、感悟,注重自主探究的尝试性
发现是探究的开始。由于好奇是少年儿童的心理特点,它往往可促使学生作进一步深入细致的观察、思考和探索,从而提出探究性的问题。让学生提出问题,自主合作探究,不仅仅是一个方式方法问题,而是一种教育观念的问题,是一种教学质量观的问题,是学生观的反映。如果我们能营造一个积极宽松和谐的课堂教学氛围,让学生成为“问”的主体,成为一个“信息源”,那么,学生学习的积极性和主动性将被大大激发。因为学生提问题总是以自身积极思考为前提的。正因为这样,我们说教师与其“给”学生10个问题,不如让学生自己去发现,去“产生”一个问题。
两步计算的解决问题教学时,我将例题巧作变动,大大激发了学生探究的欲望。
师:大家想不想来做一个猜数游戏啊?
生:想!
师:我这儿有三个不同颜色的盒子(分别出示红、白、黑三个盒子),盒子里分别装了一些硬币。现在,我请你猜一猜,红盒子里装了多少个硬币?
生:(七嘴八舌乱猜)
师:大家都没有猜对。在你没有得到相关的信息之前,你能一下子准确地猜出红盒子里装了多少个硬币吗?
生:不能。
师:那我给你一个信息:黑盒子里有15个硬币。依靠这个信息,你能准确猜出红盒子里的硬币个数吗?为什么?
生:不能。红盒子里硬币的个数与黑盒子无关。
师:我再给你一个信息:白盒子里有10个硬币。现在,你能不能猜出红盒子里硬币的个数?为什么?
生:还是不能。因为红盒子里的个数与白盒子的个数无关。
师:知道了这两个信息,你还想知道什么方面的信息就能猜出红盒子里硬币的个数了?把你的想法和小组里的成员交流一下。
学生通过交流,归纳出如果再知道一个能把红盒子与白盒子和黑盒子里的个数联系起来的信息,就能猜出红盒子里硬币的个数。学生举例:红盒子里的硬币个数比黑(白)盒子多(少)多少个;红盒子里的硬币个数是黑(白)盒子的多少倍;红盒子里的硬币个数比黑盒子和白盒子的总数多(少)多少个;红盒子里的硬币个数是黑盒子和白盒子的总数的多少倍等等。这时,引导比较学生自己提出的问题,可以发现有的只需一步计算,有的却需两步计算。让学生说说为什么要两步计算。在提出问题、比较问题的过程中,学生不仅强化了两步解决问题的结构,而且对解决问题教学中数量关系的选择有了初步的定位。教师最后出示相关信息,学生终于顺利猜出红盒子里的硬币个数。
只有学生自己主动提出问题,主体作用才能得以真正的发挥,才能体现自主探究发现。因此,教师要随时注意挖掘教材中隐藏的“发现”因素,创设一种使学生主动发现问题、提出问题的情境,启发学生自己发现问题、探索知识,使教学过程围绕学生在学习中产生的问题而展开。教师必须积极创设问题情境,引导学生提出与学习过程有密切关系的问题,使所提出的问题提到点子上,才能促进自主合作探究,达到学会学习之目的。
二、鼓励参与合作,追求自主探究的互动性
1、创设情景,激发兴趣,提供主动探究的空间。
教学时不要把学生死死地捆在教科书上,让学生死记那些他们认为很枯燥的东西。教师要根据学生的数学学习心理规律尽可能选他们乐于接受的,有价值的数学内容为题材编出问题。如给数学找到生活中的原型,让学生体验到“学数学”不是在“记数学、背数学、练数学、考数学”,而是在 “用数学”。
人教版九年义务教育六年制第九册教材第45页,应用题例1是这样的:
一个服装厂计划做660套衣服,已经做了5天,平均每天做75套。剩下的要3天做完,平均每天要做多少套?
这种类型的解决问题枯燥得很,离学生比较远,学生肯定没有兴趣。没有了兴趣不能产生探究的兴趣。我对此题做了如下改动:
(1)课件展示情境或组织学生进行对话表演。
客户:周厂长,你好!我们订做的660套衣服,生产得怎么样了?
厂长:已经做了5天,平均每天做75套。
客户:我们等着要货,你们3天之内能完成了吗?
厂长:能。
(2)师:同学们!你们根据厂长、客户提供的信息想到什么数学问题?
教师根据学生的回答,整理出以上出示的例1。
(3)师:你们会解答吗?如果不会,可以小组讨论。
生:略
这种方式较好地体现了“数学问题生活化”和“自主学习、探索创新”两大方面,将学习活动置于社会生活问题之中,巧妙地把要解决的问题变为对话展现给学生。让学生主动积极地获取知识,将感性的实际活动与学生的内心感受体验结合起来。这样的数学,学生不仅学得好,而且也为他们以后到社会上去成为各行各业的成功者打好基础。
2、给学生自由选择的权利,提供主动探究空间。
每个学生都有自己独特的内心世界、精神世界和内心感受,有着不同于他人的观察、思考、解决问题的方式。现代教育越来越重视每个学生潜能的开发和个性的发展。由于学生的认知水平和认知习惯的不同,常常会想出不同的计算方法,这正是学生具有不同独特性的体现。因此在教学过程中,教师要鼓励学生灵活运用知识,尝试各种算法的多样化。
无论学生用哪种方法解决这个问题,都应该给予肯定,不能强求学生使用统一的方法解决同样的问题,在学生独立思考解决这个问题的基础上,进行小组内的交流,每个学生都发表自己的观点,倾听同伴的解决方法,使每个学生感受到解决方法的灵活性、多样化。这样的教学有利于培养学生独立思考的能力,有利于学生进行学习交流。使每个学生都有获得成功的愉悦,而且还能使不同的人学到不同的数学,不同的人在数学上得到不同的发展。
3、建立合作小组,提供主动参与的合作伙伴。
课前先建立合作小组,将不同学习能力、学习态度、学习兴趣、性别、个性的学生分配在同一组内,组成4人或6人的小组,再给组内成员一个特殊的身份,一项特殊的职责。如“主持人”(掌管小组讨论的全局,分配发言机会,协调小组学习的进程,观察组内同学合作技巧的表现,如讨论时的声音控制、提问和应答时的礼貌)等,最后要求每一组设计组名、组标,促使合作学习小组形成“组内互助合作,组间竞争夺标”的氛围。
解决问题具有抽象性,有时学生不能很好地理解题意,造成解题障碍。在这种情况下,教师应重视问题解决的过程,让学生理解题意,从而轻松掌握解题方法。
4、选择专题,分工合作,加强主动探究能力。
在有限的课堂时间里,可紧扣教材,选择重点、难点、疑点作为专题,运用研究性学习,分工合作,提高学生的主动性、研究性和发现的能力。为了减少学生研究探索学习的梯度,课堂上利用教材特点进行专题研究是必不可少的,可在课外探究学习中面对更多的是如何搜集处理信息怎样与人合作。为此要引导学生遇到困难时能主动寻求帮助,要热情地帮助他人排忧解难。若自己拥有材料正是别人急需的,能成全他人的计划,使自己在学会探究的同时,更学会做人。
三、激活求异思维,培养自主探究的独创性
通过不同的途径,从不同的角度,用不同的方法解决问题,这样不仅活跃了学生的思维,开阔了思路,同时也促进学生养成善于求异的习惯,对于培养学生的创新能力有着决定性的作用。在教师的教学中,通过表达方式的变异,理解角度的变更,思考方法的变迁,题型设计的变化等来提供多形态的知识信息,创造多样化的思维环境,接通多方位的解题思路,从而促进内容的深化,理解的深入,提高学生思维的变通性和广阔性。人们在理解知识的过程中,习惯运用某种思维方式,便会产生定势心理。教师在教学中要不失时机地创设思维情境,千方百计地为学生提供创新素材和空间。用“教”的创新火种点燃“学”的创新火,才能有成效地培养学生自主探究的独创性。
比如针对五年级的学生,在学习了三步计算的应用题后,我设计了一道与学生生活比较接近的开放题,以此来激活学生的变通思维:
学校组织师生看电影。学生950人,教师27人。影剧院售票处写着:
今日放映
《宇宙与人》
成人票: 每张8元
学生票: 每张4元
团体票: 每张6元
(30人或30人以上可购买团体票)
请设计一种你认为最省钱的购票方案,并算出购票一共需要多少钱?
题目一出示,学生就颇有兴趣,积极开动脑筋,力求找到最佳方案。
以下是 学生不同的解题方法:
方法1:827+4950=4016(元)
方法2:(27+950)6=5862(元)
方法3:从学生人数中拿出3人,和教师组成一个团体。
306+9474=3968(元)
……
针对这样的问题,不同层次的学生有不同的解法,每位学生在这样的问题情境中都得到了充分地发挥。通过练习,培养了学生主动应用数学知识的能力
四、设计开放作业,强化自主探究实践性
数学教学是一个开放的系统,生活中处处有数学,也处处用数学。皮亚杰认为“儿童如果不具有自己的真实活动,教育就不可能成功。”如何设计开放的作业,让学生在自主探究的实践中有所收获呢?首先要尊重学生择业的要求,其次要开放作业的形式与内容。
1、迁移例题解法。
如讲授了植树问题后,可建议学生去步行街上走一走,数一数步行街上有多少个垃圾桶,目测一下每两个垃圾桶之间的距离大约是多少米,再算一算从起始的垃圾桶到最后一个垃圾桶之间的总长度约是多少米?
2、结合生活热点。
国庆、元旦等节日期间,许多商店推出打折的促销手段,可以在家长的带领下,去商店购物,看看商品的原价是多少,打几折,打折以后的价钱是多少,比原价便宜多少?记录下你的考察结果。返校后可组织讨论:商店利用打折的手段促销商品,它是赚多了,还是赚少了?会不会亏本?让学生真切的感受到数学就在我们的身边。
3、加强专题实践。
学习了长方形和正方形面积的计算以后,就可以跟爸爸妈妈一起给家设计一些装修方案。比如:量一量房间的长和宽,算一算房间的面积大约是多少平方米。如果购买地板的话,根据家庭的经济实力,再去市场了解地板的价格,选择合适的价位,进行购买,大约需要支出多少。
这样开放的作业内容,既与教材内容相联系,又与学生生活相结合,还“接轨”了社会活动,学生有了“自由驰骋”的自主学习,自由探索的空间,在实践中才能焕发生命的活力,充满成长的气息,书写一个创造的人生。
解决问题的教学内涵丰富,如何让学生喜欢它,这是我们当前所面临的问题。但我坚信,只要教师通过一定的策略,为学生营造轻松的氛围,让学生觉得要解决 的问题,离自己并不遥远,问题解决才有价值。这样才能让学生喜欢上解决问题。从而真正掌握解决方法。达到了这种境界才算是一堂成功的优秀的教学。

㈨ 小学数学中解决问题的策略有哪些

要提高学生解决问题的能力,关键是要加强对学生进行解决问题策略的指导。解决问题的策略是在解决问题的过程中逐步形成和积累的,同时需要学生自己不断进行内化。根据问题的难易程度,解决问题的策略可以分为一般策略和特殊策略两类。

一、一般策略
有些问题的数量关系比较简单,学生只需依据生活经验或通过分析、综合等抽象思维过程就可以直接解决问题。
1.生活化。生活化是指在解决数学问题时通过建立与学生生活经验的联系从而解决问题的策略,常运用于学习新知时,关键要在问题解决后向学生点明解决问题过程中所蕴涵的数学知识和方法。如学习《最大公因数》,先出示问题:老师最近买了一个车库,长40分米、宽32分米,想在车库的地面上铺正方形地砖。如果要使地砖的边长是整分米数,在铺地砖时又不用切割,地砖有几种选择?如果要使买的块数最少,应该买哪一种?因为学生对此类问题比较熟悉,所以普遍认为:地砖的边长应该是40和32公有的因数,公有因数最大时买的块数最少,解决这两个问题应先找出40和32的因数。然后让学生梳理解决问题的过程,并点明什么是公因数、什么是最大公因数、如何找公因数和最大公因数。
2.数学化。数学化是指在解决实际问题时通过建立与学生已有知识的联系从而解决问题的策略,常运用于实际解决问题时,关键是在解决问题之前要让学生明确运用什么知识和方法来解决问题。如学习《长方形周长》,当学生已经知道长方形周长=(长+宽)×2后出示:小明沿着一个长方形游泳池走了一圈,他一共走了多少米?首先让学生明确“求一共走了多少米就是求长方形周长”,再思考“长方形周长怎么求”、“求长方形周长应知道什么”,最后出示信息“长50米、宽20米”,学生就能自主解决问题。
3.纯数学。纯数学是指在解决数学问题时通过分析、利用数量之间的关系从而解决问题的策略,常运用于学习与旧知有密切联系的新知时,关键要在需解决的数学问题和已有的数学知识之间建立起桥梁。如学习《稍复杂的分数乘法应用题》,先出示旧问题:水泥厂二月份生产水泥8400吨,三月份比二月份增加25%,三月份生产水泥几吨?学生认为:因为增加几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1+25%)=8400×(1+25%)。再出示新问题:水泥厂二月份生产水泥8400吨,三月份比二月份减少25%,三月份生产水泥几吨?让学生说说两类问题有什么异同,因为这两类问题有着本质的联系,所以教师只需在两者之间建立起联系的桥梁,学生就能用迁移的方法自主解决新问题,他们认为:因为减少几吨=二月份几吨×25%,所以三月份几吨=二月份几吨×(1-25%)=8400×(1-25%)。

二、特殊策略
有些问题的数量关系较复杂,常需要一些特殊的解题策略来突破难点,从而找到解题的关键并顺利解决问题。小学生常用的也易接受的特殊策略主要有以下七种:
1.列表的策略。这种策略适用于解决“信息资料复杂难明、信息之间关系模糊”的问题,它是“把信息中的资料用表列出来,观察和理顺问题的条件、发现解题方法”的一种策略。如在学习人教版第7册《烙饼中的数学问题》时,为了研究烙饼个数与烙饼时间的关系就可采用列表策略,如右图。运用此策略时要注意:(1)带领学生经历填表过程;(2)引导学生理解数量之间的关系;(3)启发学生利用表格理出解题思路,说一说自己的发现,感受函数关系。
2.画图的策略。这种策略适用于解决“较抽象而又可以图像化”的问题,它是“用简单的图直观地显示题意、有条理地表示数量关系,从中发现解题方法、确定解题方法”的一种策略。如在学习人教版第5册《搭配问题》时,为了能更直观、有条理地解决问题就可采用画图策略,如右图。运用此策略时要注意:(1)让学生在画图的活动中体会方法,学会方法;(2)画图前要理请数量关系;(3)画图要与数量关系相统一。
3.枚举的策略。这种策略适用于解决“用列式解答比较困难”的问题,它是“把事情发生的各种可能进行有序思考、逐个罗列,并用某种形式进行整理,从而找到问题答案”的一种策略。如在学习人教版第3册《简单的排列与组合》时,为了能做到不重复不遗漏就可采用枚举策略,如右图。运用此策略时要注意:(1)在枚举的时候要有序地思考,做到不重复、不遗漏;(2)设计的教学活动应包括“引发需要——填表列举——反思方法——感悟策略”等几个主要环节;(3)要在反思中积累列举技巧,引导学生进行整理、归纳与交流。
4.替换的策略。这种策略较适用于解决“条件关系复杂、没有直接方法可解”的问题,它是“用一种相等的数值、数量、关系、方法、思路去替代变换另一种数值、数量、 关系、方法、思路从而解决问题”的一种策略。如学习人教版第6册《等量代换》时,为了能把复杂问题变成简单问题就可采用替换策略,如右图。运用此策略时要注意:(1)把握替换的思路,提出假设并进行替换、分析替换后的数量关系;(2)掌握替换的方法,在题目中寻找可以进行替换的依据、表示替换的过程;(3)抓住替换的关键,明确什么替换什么、把握替换后的数量关系。
5.转化的策略。这种策略主要适用于解决“能把数学问题转化为已经解决或比较容易解决的问题”的问题,它是“通过把复杂问题变成简单问题、把新颖问题变成已经解决的问题”的一种策略。如学习人教版第11册《按比例分配》时,为了能让学生利用所学知识主动解决新问题就可采用转化策略,如右图。运用此策略时要注意:(1)突出转化策略的实用价值,精心选择数学问题;(2)突破运用转化策略的关键,把新问题、非常规问题分别转化成熟悉的、常规的且能够解决的问题;(3)在丰富的题材里灵活应用转化策略,提高应用转化策略解决问题的能力。
6.假设的策略。这种策略主要运用于解决“一些数量关系比较隐蔽”的问题,它是“根据题目中的已知条件或结论作出某种假设,然后根据假设进行推算,对数量上出现的矛盾进行适当调整,从而找到正确答案”的一种策略。如学习人教版第11册《鸡兔同笼》时,为了能使隐蔽复杂的数量关系明朗化、简单化就可采用假设策略,如右图。运用此策略时要注意:(1)根据题目的已知条件或结论作出合理的假设;(2)要弄清楚由于假设而引起的数量上出现的矛盾并作适当调整;(3)根据一个单位相差多少与总数共差多少之间的数量关系解决问题。
7.逆推的策略。这种策略主要运用于解决“已知‘最后的结果、到达最终结果时每一步的具体过程或做法、未知的是最初的数量’这三个条件”的问题,它是“从题目的问题或结果出发、根据已知条件一步一步地进行逆向推理,逐步靠拢已知条件直至问题解决”的一种策略。如解决右图中的类似问题时,为了能更充分地利用条件、更好地解决问题就可以运用逆推策略。运用此策略时要注意:(1)在铺垫式叙述时不要有任何暗示,不到最后不要得出结论;(2)在每一处的叙述中都要能为最后的结论服务;(3)在向前推理的过程中,每一步运算都是原来运算的逆运算;(4)这类问题还可以用画线段图和列表的方法来解决。

关注解决问题的策略,对于如何分类其实并不重要,重要的是要理解常用策略的本质、把握每种策略的运用范围和要点,更快、更好地解决问题。

㈩ 如何在初中数学课中进行变式教学

一、递进变异

递进变异是指题目由特殊到一般的变异,而解题需要的基础知识保持不变。一是题目的条件由特殊到一般,由简单到复杂变异,这样可形成递进式变式题组。递进式变式题组是指在课堂教学中,为了达到某一教学目的,根据学生的认知规律,合理、有效地设计一组数学问题,且这组数学问题又有一定的内在逻辑联系,即前一个问题是后一个问题的特殊情况,后一个问题是前一个问题的一般的、情况,这样由特殊到一般的题目组合称为递进式变式题组。这种递进式变式题组,层层递进,由浅入深,由简到繁,循序渐进,螺旋式上升,有利于学生对问题本质的深刻理解,进而掌握解题规律、突破教学难点。二是在解题的一般规律不变的情况下,通过变化非本质属性,有利于学生从中分离出一般的规律。三是有利于不同层次的学生。由于问题由简单到复杂,可使不同层次的学生顺着台阶一步步的往上爬,并从中掌握一般规律。例如,在“分式”的教学中,设计如下作业。

案例1:


六、几点思考

第一,基于变异理论进行变式教学,题目的变异要围绕不变的本质而展开。变异的目的是要学生通过几个实例发现并总结、归纳出解决问题的一般性原理(规律). 因此,在进行变异时,首先要明确问题的本质,然后围绕问题的本质不变,变化非本质属性,以突出问题的本质属性,使此类问题的一般性原理凸出出来。

第二,重复有利于提高学生数学知识的记忆强度。变异是在本质不变的情况下展开的,也就是说学生解答此类问题运用的思想方法是相同的. 因此,学生要重复使用相同的原理解答题目,是一种重复的思维活动。认知心理学的研究表明,重复可以增强学生对知识的记忆,能够使长时记忆中的记忆强度增加,即记忆的痕迹大,这样在学生解答其他问题时,便于从长时记忆中提取需要迁移的信息,从而提高分析问题和解决问题的能力。

第三,变异有利于不同层次学生发现并总结掌握问题的一般原理。学生之间的差异是客观存在的,不同的学生其解决问题的能力,以及归纳、概括的能力是不同的. 因此,在进行题目变异时,要使题目有一定的梯度,也就是要递进式变异,由简单到复杂,从而使不同层次的学生都能够从中分析并发现一般性的原理。

阅读全文

与怎么数学解决问题从难变意解题方法相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:743
乙酸乙酯化学式怎么算 浏览:1408
沈阳初中的数学是什么版本的 浏览:1358
华为手机家人共享如何查看地理位置 浏览:1049
一氧化碳还原氧化铝化学方程式怎么配平 浏览:890
数学c什么意思是什么意思是什么 浏览:1416
中考初中地理如何补 浏览:1307
360浏览器历史在哪里下载迅雷下载 浏览:706
数学奥数卡怎么办 浏览:1396
如何回答地理是什么 浏览:1030
win7如何删除电脑文件浏览历史 浏览:1060
大学物理实验干什么用的到 浏览:1490
二年级上册数学框框怎么填 浏览:1707
西安瑞禧生物科技有限公司怎么样 浏览:988
武大的分析化学怎么样 浏览:1252
ige电化学发光偏高怎么办 浏览:1341
学而思初中英语和语文怎么样 浏览:1660
下列哪个水飞蓟素化学结构 浏览:1427
化学理学哪些专业好 浏览:1490
数学中的棱的意思是什么 浏览:1066