A. 随机分布的期望和平均值有什么区别
简单的说,有区别!!
随机变量的期望是以概率为权重的加和。
平均值是认为各个随机变量的概率都是相等的(等权的),所以就是算术平均值的算法。
在矩估计里,由于我得到的样本有限,故认为随机变量的概率是等权的,所以用平均值估计期望。
B. 平均值与数学期望的区别,在什么条件下相等.
通俗来说平均值和数学期望都是反映概率中可能性最大的值,可数学期望反映的值比平均值更准确,如果你的N个数相等,或者N=1时,数学期望和平均值相等
C. 谁能给我讲讲期望与平均值的区别
虽然都是有平均的概念,但一个很根本的区别在于,期望是随机变量的总体的平均,而平均值是从总体中抽取出来的样本的平均。前者是理论上的值、理想值,后者是现实观察到的统计量。
举个例子,掷一枚六面均匀的骰子所得的点数 X,这是个随机变量,X 的期望是 3.5(= [ 1 + 2 + 3 + 4 + 5 + 6 ] / 6 )。而平均值呢?将多次掷这枚骰子所得的点数求平均——比如掷五次取平均值,每次实验测得的平均值可能与期望 3.5 有差异。
D. 期望和平均值有何区别
期望和平均值的主要区别是:期望主要是针对大群体数据的计算,平均值主要针对小群体的计算。
1,均值(mean value)是针对既有的数值(简称母体)全部一个不漏个别都总加起来,做平均值(除以总母体个数),就叫做均值。
此法针对小群体做此加总后除以个数得到均值的方法,是很准确无误的,这个得到的均值是准确的,不会有模糊的概念。
但是当这个数群(data group)的数量(numbers)很大很多时,我们只好做个抽样(sampling),并“期望”透过抽样所得到的均值,去预测整个群体的“期望值(expectation value)”。
2,在概率论和统计学中,期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是指在一个离散性随机变量试验中每次可能结果的概率乘以其结果的总和。
换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。)
E. 数学期望就是平均值吗
数学期望不是平均值。
1、期望是个确定的数,是根据概率分布得到的。不管进不进行实验,期望都可以求出来。
数学期望,又称为均值,即"随机变量取值的平均值"之意,这个平均是指以概率为权的加权平均。
2、平均数(mean),是做多次实验之后,总和的平均数。
(5)平均数与数学期望的区别在哪里扩展阅读:
数学期望的应用
1、经济决策
假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元。
若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润?并求出最大利润的期望值。
分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。
因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。
2、体育比赛问题
乒乓球是我们的国球,上世纪兵兵球也为中国带了一些外交。中国队在这项运动中具有绝对的优势。现就乒乓球比赛的安排提出一个问题:假设德国国队(德国队名将波尔在中国也有很多球迷)和中国队比赛。
赛制有两种,一种是双方各出3人,三场两胜制, 一种是双方各出5人,五场三胜制,哪一种赛制对中国队更有利?
分析:由于中国队在这项比赛中的优势,不妨设中国队中每一位队员德国队员的胜率都为60%,接着只需要比较两个队对应的数学期望即可。
F. 均值和数学期望是什么怎么区分
均值和数学期望是什么?怎么区分写回答
均值和数学期望是什么?怎么区分
写回答
共5个回答
禾鸟heniao
LV.112019-06-06
均值和数学期望没有区别。在概率论以及统计学中,数学期望或均值,亦简称期望,是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一,反映了随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于“期望”—“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
在概率和统计学中,一个随机变量的期望值(或期待值)是变量的输出值乘以其机率的总和,换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
G. 期望和平均数的相同点和不同点平均数和期望哪个更能代表变量的平均水平
期望更能代表一组数据的平均水平。二者的相同点和不同点如下所示:
数学期望和算术平均的关系是指:在期望值的计算中,用古典概率论,每个数据对应的概率是1、N。N是数据个数。那么数学期望值就等于算术平均数。
1、在概率论和统计学中,数学期望是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
2、大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
3、算术平均,又称均值,是统计学中最基本、最常用的一种平均指标,分为简单算术平均数、加权算术平均数。主要适用于数值型数据,不适用于品质数据。根据表现形式的不同,算术平均数有不同的计算形式和计算公式。
4、算术平均是加权平均数的一种特殊形式。在实际问题中,当各项权重不相等时,计算平均数时就要采用加权平均数当各项权相等时,计算平均数就要采用算术平均数。
H. 均值和数学期望是什么怎么区分
均值和数学期望没有区别。在概率论以及统计学中,数学期望或均值,亦简称期望,是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一,反映了随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于“期望”—“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
在概率和统计学中,一个随机变量的期望值(或期待值)是变量的输出值乘以其机率的总和,换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
(8)平均数与数学期望的区别在哪里扩展阅读
数学期望的应用
(1)经济决策
假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元。
若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润。并求出最大利润的期望值。
分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。
因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。
(2)体育比赛问题
乒乓球是我们的国球,上世纪兵兵球也为中国带了一些外交。中国队在这项运动中具有绝对的优势。现就乒乓球比赛的安排提出一个问题:假设德国队(德国队名将波尔在中国也有很多球迷)和中国队比赛。
赛制有两种,一种是双方各出3人,三场两胜制, 一种是双方各出5人,五场三胜制,哪一种赛制对中国队更有利。
分析:由于中国队在这项比赛中的优势,不妨设中国队中每一位队员德国队员的胜率都为60%,接着只需要比较两个队对应的数学期望即可。
参考资料来源:网络-数学期望