导航:首页 > 数字科学 > 离散数学组合数学有什么区别

离散数学组合数学有什么区别

发布时间:2022-09-14 15:31:53

❶ 基础数学\高等数学\组合数学\离散数学的联系与区别

基础数学即小学中学数学加上大学的高等数学和高等代数。
高等数学即微积分,数学系又叫数学分析。
组合数学和离散数学是计算机数学,比较高深。组合数学研究各种排列组合,特殊数列与多项式,计算机算法复杂度等。离散数学更加抽象,包含语言的数理逻辑,集合论,抽象代数等。

❷ 离散数学和组合数学是同一个吗

组合数学属于一种离散数学。
我们一般所说的离散数学,一般都是指大学里计算机专业的“离散数学课程”,所以一般地组合数学要比“离散数学课程”里的内容更精深和专业,这就象“数论”,特别是初等数论,应该属于离散数学,但是一般的离散数学课程里关于整数的知识肯定不如初等数论中的内容多。

❸ 大学计算机专业的离散数学和计算机专业的研究生的组合数学有什么区别呢 计算机专业的同学请回答下。

组合数学(Combinatorial mathematics),又称为离散数学。离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。离散数学在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。

❹ 组合数学和离散数学有什么区别

组合数学(combinatorial mathematics)
广义
有人认为广义的组合数学就是离散数学,也有人认为离散数学是狭义的组合数学和图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。

狭义
狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化等。

离散数学(Discrete mathematics)是数学的几个分支的总称,以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数无穷个元素;因此它充分描述了计算机科学离散性的特点。

内容包含:数理逻辑、集合论、代数结构、图论、组合学、数论等。

由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系, 因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。

离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。

离散数学通常研究的领域包括:数理逻辑、集合论、关系论、函数论、代数系统与图论。

❺ 1.计算机专业先学离散数学还是数据结构 2.计算机专业要学的离散数学和组合数学有什么相同和不同

计算机专业应先学离散数学

计算机专业要学的离散数学
包含组合数学的内容
但有很多不是组合数学的内容

❻ 具体数学VS离散数学VS组合数学什么关系

1、具体数学这们课程就是讲数学在计算机学中如何应用,在计算机学中如何用数学来解决问题,是数学和计算机学的结合。

2、离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。

它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,

如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。

通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。

3、组合数学(combinatorial mathematics),又称为离散数学。

狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面问题。组合数学主要内容有组合计数、组合设计、组合矩阵、组合优化等。有

时人们也把组合数学和图论加在一起看作离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。

计算机科学即算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。

组合数学的发展改变了传统数学中分析和代数占统治地位的局面。

具体数学是与离散数学正好相对应的数学学科的分支。 具体数学和离散数学一样也是计算机科学的不可分割的一部分,应用于程序设计和算法式分析。

(6)离散数学组合数学有什么区别扩展阅读

《具体数学:计算机科学基础:第2版》是一本在大学中广泛使用的经典数学教科书。

书中讲解了许多计算机科学中用到的数学知识及技巧,教你如何把一个实际问题一步步演化为数学模型,然后通过计算机解决它,特别着墨于算法分析方面。

其主要内容涉及和式、整值函数、数论、二项式系数、特殊的数、生成函数、离散概率、渐近式等,都是编程所必备的知识.另外,本书包括了六大类500 多道习题,并给出了所有习题的解答,有助读者加深书中内容的理解。

《具体数学:计算机科学基础:第2版》面向从事计算机科学、计算数学、计算技术诸方面工作的人员,以及高等院校相关专业的师生。

离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。

离散数学的应用遍及现代科学技术的诸多领域。

离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个着名的典型例子-四色定理又称四色猜想,

这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯·格思里提出的,他在进行地图着色时,发现了一个现象,"每幅地图都可以仅用四种颜色着色,

并且共同边界的国家都可以被着上不同的颜色"。那么这能否从数学上进行证明呢?

100多年后的1976年,肯尼斯·阿佩尔(Kenneth Appel)和沃尔夫冈·哈肯(Wolfgang Haken)使用计算机辅助计算,用了1200个小时和100亿次的判断,终于证明了四色定理,轰动世界,这就是离散数学与计算机科学相互协作的结果。

离散数学可以看成是构筑在数学和计算机科学之间的桥梁,因为离散数学既离不开集合论、图论等数学知识,又和计算机科学中的数据库理论、数据结构等相关,它可以引导人们进入计算机科学的思维领域,促进了计算机科学的发展。

❼ 离散数学、组合数学、图论的关系是什么

图论是组合数学的一个分支,而离散数学是专为计算机专业编的数学书,和组合数学有部分知识交叉。

离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。

组合数学(Combinatorial mathematics),又称为离散数学。广义的组合数学就是离散数学,狭义的组合数学是离散数学除图论、代数结构、数理逻辑等的部分。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。

图论〔Graph Theory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。

(7)离散数学组合数学有什么区别扩展阅读:

一、离散数学学科内容

1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数。

2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用。

3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数。

4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理。

5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理。

二、图论的起源

众所周知,图论起源于一个非常经典的问题——柯尼斯堡(Konigsberg)问题。

1738年,瑞典数学家欧拉( Leornhard Euler)解决了柯尼斯堡问题。由此图论诞生。欧拉也成为图论的创始人。

1859年,英国数学家汉密尔顿发明了一种游戏:用一个规则的实心十二面体,它的20个顶点标出世界着名的20个城市,要求游戏者找一条沿着各边通过每个顶点刚好一次的闭回路,即“绕行世界”。用图论的语言来说,游戏的目的是在十二面体的图中找出一个生成圈。

这个生成圈后来被称为汉密尔顿回路。这个问题后来就叫做汉密尔顿问题。由于运筹学、计算机科学和编码理论中的很多问题都可以化为汉密尔顿问题,从而引起广泛的注意和研究。

阅读全文

与离散数学组合数学有什么区别相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:793
乙酸乙酯化学式怎么算 浏览:1449
沈阳初中的数学是什么版本的 浏览:1411
华为手机家人共享如何查看地理位置 浏览:1097
一氧化碳还原氧化铝化学方程式怎么配平 浏览:942
数学c什么意思是什么意思是什么 浏览:1474
中考初中地理如何补 浏览:1359
360浏览器历史在哪里下载迅雷下载 浏览:754
数学奥数卡怎么办 浏览:1456
如何回答地理是什么 浏览:1084
win7如何删除电脑文件浏览历史 浏览:1105
大学物理实验干什么用的到 浏览:1540
二年级上册数学框框怎么填 浏览:1762
西安瑞禧生物科技有限公司怎么样 浏览:1180
武大的分析化学怎么样 浏览:1297
ige电化学发光偏高怎么办 浏览:1387
学而思初中英语和语文怎么样 浏览:1725
下列哪个水飞蓟素化学结构 浏览:1476
化学理学哪些专业好 浏览:1531
数学中的棱的意思是什么 浏览:1122