导航:首页 > 数字科学 > 系统的数学模型有哪些

系统的数学模型有哪些

发布时间:2022-02-10 21:21:30

㈠ 什么是系统的数学模型

什么是混沌学--1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个陆龙卷,并由此提出了天气的不可准确预报性。时至今日,这一论断仍为人津津乐道,更重要的是,它激发了人们对混沌学的浓厚兴趣。今天,伴随计算机等技术的飞速进步,混沌学已发展成为一门影响深远、发展迅速的前沿科学。一般地,如果一个接近实际而没有内在随机性的模型仍然具有貌似随机的行为,就可以称这个真实物理系统是混沌的。一个随时间确定性变化或具有微弱随机性的变化系统,称为动力系统,它的状态可由一个或几个变量数值确定。而一些动力系统中,两个几乎完全一致的状态经过充分长时间后会变得毫无一致,恰如从长序列中随机选取的两个状态那样,这种系统被称为敏感地依赖于初始条件。而对初始条件的敏感的依赖性也可作为一个混沌的定义。与我们通常研究的线性科学不同,混沌学研究的是一种非线性科学,而非线性科学研究似乎总是把人们对“正常”事物“正常”现象的认识转向对“反常”事物“反常”现象的探索。例如,孤波不是周期性振荡的规则传播;“多媒体”技术对信息贮存、压缩、传播、转换和控制过程中遇到大量的“非常规”现象产生所采用的“非常规”的新方法;混沌打破了确定性方程由初始条件严格确定系统未来运动的“常规”,出现所谓各种“奇异吸引子”现象等。混沌来自于非线性动力系统,而动力系统又描述的是任意随时间发展变化的过程,并且这样的系统产生于生活的各个方面。举个例子,生态学家对某物种的长期性态感兴趣,给定一些观察到的或实验得到的变量(如捕食者个数、气候的恶劣性、食物的可获性等等),建立数学模型来描述群体的增减。如果用Pn表示n代后该物种极限数目的百分比,则着名的“罗杰斯蒂映射”:Pn+1=kP(1-Pn(k是依赖于生态条件的常数)可以用于在给定Po,k条件下,预报群体数的长期性态。如果将常数k处理成可变的参数k,则当k值增大到一定值后,“罗杰斯蒂映射”所构成的动力系统就进入混沌状态。最常见的气象模型是巨型动力系统的一个例子:温度、气压、风向、速度以及降雨量都是这个系统中随时间变化的变量。洛伦兹(E.N.Lorenz)教授于1963年《大气科学》杂志上发表了“决定性的非周期流”一文,阐述了在气候不能精确重演与长期天气预报者无能为力之间必然存在着一种联系,这就是非周期性与不可预见性之间的关系。洛伦兹在计算机上用他所建立的微分方程模拟气候变化的时候,偶然发现输入的初始条件的极细微的差别,可以引起模拟结果的巨大变化。洛伦兹打了个比喻,即我们在文首提到的关于在南半球巴西某地一只蝴蝶的翅膀的偶然扇动所引起的微小气流,几星期后可能变成席卷北半球美国得克萨斯州的一场龙卷风,这就是天气的“蝴蝶效应”。混沌不是偶然的、个别的事件,而是普遍存在于宇宙间各种各样的宏观及微观系统的,万事万物,莫不混沌。混沌也不是独立存在的科学,它与其它各门科学互相促进、互相依靠,由此派生出许多交叉学科,如混沌气象学、混沌经济学、混沌数学等。混沌学不仅极具研究价值,而且有现实应用价值,能直接或间接创造财富。混沌学的前途不可限量。

㈡ 动力学系统的数学模型主要包括哪些种类

一、运筹学模型
线性规划模型
整数规划模型
非线性规划模型
网络模型
多目标规划模型
目标规划模型
库存模型
对策模型
随机规划模型
决策模型
投入产出模型
评价模型
二、微分方程模型
一阶常微分方程模型
高阶微分方程和方程组模型
差分方程模型
偏微分方程模型
三、概率统计模型
预测模型
正交试验设计模型
经济计量模型
马尔可夫链模型

㈢ 有哪些数学模型类型

用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。静态和动态模型。静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。

分布参数和集中参数模型。分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。连续时间和离散时间模型。模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。随机性和确定性模型:随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。

㈣ 数学模型有哪些

内容如下:

1、生物学数学模型

2、医学数学模型

3、地质学数学模型

4、气象学数学模型

5、经济学数学模型

6、社会学数学模型

7、物理学数学模型

8、化学数学模型

9、天文学数学模型

10、工程学数学模型

11、管理学数学模型

数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。

数学模型这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。

因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

㈤ 习题 2-1 什么是系统的数学模型常用的数学模型有哪些

—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义. 模型准备 首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设 根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种传统的和近代的数学方法,特别是计算机技术. 模型分析 对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析、模型对数据的稳定性或灵敏性分析等. 模型检验 把数学上分析的结果翻译回到实际问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性.这一步对于建模的成败是非常重要的,要以严肃认真的态度来对待.当然,有些模型如核战争模型就不可能要求接受实际的检验了.模型检验的结果如果不符合或者部分不符合实际,问题通常出在模型假设上,应该修改、补充假设,重新建模.有些模型要经过几次反复,不断完善,直到检验结果获得某种程度上的满意. 模型应用 应用的方式自然取决于问题的性质和建模的目的,这方面的内容不是本书讨论的范围。 应当指出,并不是所有建模过程都要经过这些步骤,有时各步骤之间的界限也不那么分明.建模时不应拘泥于形式上的按部就班,本书的建模实例就采取了灵活的表述方式

㈥ 数学模型有哪些

模型种类
用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。

静态和动态模型
静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。
分布参数和集中参数模型
分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。
连续时间和离散时间模型
模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。
随机性和确定性模型
随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。
参数与非参数模型
用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种系统辨识的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。
线性和非线性模型
线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。

㈦ 系统的数学模型是指什么

述内容数据模型包括三个部分:一个数据结构,数据操纵,数据约束.
1)的数据结构:该数据模型的数据结构描述了数据类型,内容,等之间的数据链路的性质.数据结构是基于所述数据结构中的数据模型,数据操纵和限制的基础.具有不同的操作和约束不同的数据结构.
2)操作数据:数据模型描述了数据操纵操作类型和操作方式上的相应的数据结构.
3)数据约束:数据模型约束语法,意思是描述内的数据,对它们之间的约束和依赖关系,以及动态数据的规则的结构之间的主要接触中的数据,以确保该数据是正确的,有效的和相容性.即,概念数据模型,逻辑数据模型,物理数据模型:根据不同的应用水平分为三种类型
数据模型.
1,概念数据模型(概念数据模型):短期概念模型是一个面向用户的数据库模型来实现世界各地,主要用来描述世界的结构,它允许数据库设计者在初始阶段的概念化的设计,摆脱计算机系统和数据库管理系统的具体技术问题,并着眼于数据分析和之间的其它特定的数据管理系统中的数据链路(数据库管理系统,被称为DBMS)中是独立的.概念数据模型必须由一个逻辑数据模型来代替所用的数据库管理系统来实现.
2,逻辑数据模型(逻辑数据模型):被称为一个数据模型,这是从该数据库的用户模型所示,数据库管理系统是专门由数据模型的支持,例如网的数据模型(网络数据模型),层次数据模型(层次数据模型)等.这种模式不仅对用户的需求,同时也为系统,主要用于数据库管理系统(DBMS)的实现.
3中,物理数据模型(物理数据模型):缩写物理模型是一个计算机模型的物理表示,描述了存储介质上的数据结构,它不仅涉及特定的DBMS中,而且还与操作系统和硬件有关.每个逻辑数据模型起到了实现相应的物理数据模型.DBMS以确保其独立性和可移植性,大部分的工作,实现了物理数据模型还可以自动完成,设计师只设计指标的特殊结构,聚集.
概念数据模型是最常用的是ER模型,ER模型,面向对象的模型和谓词模型的扩展.在逻辑数据类型是最常用的分层模型时,网格模型,关系模型.

㈧ 数学模型有哪些

1、生物学数学模型

2、医学数学模型

3、地质学数学模型

4、气象学数学模型

5、经济学数学模型

6、社会学数学模型

7、物理学数学模型

8、化学数学模型

9、天文学数学模型

10、工程学数学模型

11、管理学数学模型

(8)系统的数学模型有哪些扩展阅读:

数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。

数学模型这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。

因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

㈨ 在数据库系统中,常用的数学模型主要有那四种呢

1、静态和动态模型

静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用系统传递函数是动态模型是从描述系统的微分方程变换而来。

2、分布参数和集中参数模型

分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。

3、连续时间和离散时间模型

模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。

4、参数与非参数模型

用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到响应,通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。

(9)系统的数学模型有哪些扩展阅读:

数学模型建模过程

1、模型准备

了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

2、模型假设

根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

3、模型建立

在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

4、模型求解

利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。

5、模型分析

对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。

6、模型检验

将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

㈩ 控制系统的数学模型有哪三种

自动控制系统的数学模型有微分方程、传递函数、频率特性、结构图。

阅读全文

与系统的数学模型有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1259
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1348
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:824
武大的分析化学怎么样 浏览:1212
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016