Ⅰ 如何在课堂教学中有效渗透数学思想方法的
作为一名小学教师,每天的课堂教学我们总是在有意或无意的渗透着数学思想方法。美国教育心理家布鲁纳指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法非常重要。下面我就谈谈在小学数学教学中,我是如何渗透数学思想方法:
一、改变应试教育观念,创新数学思想方法。
数学思想方法隐含在数学知识体系里,是无“形”的,而数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的。作为教师首先要改变应试教育观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,长方体和正方体的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立长方体和正方体的表象;(2)在表象的基础上,指出长方体和正方体特点,使学生对长方体和正方体有一个更深层次的认识;(3)利用长方体和正方体的各种表象,分析其本质特征,抽象概括为用文字语言表达的长方体和正方体的概念;(4)使长方体和正方体的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象,再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想方法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。
二、课堂教学中及时渗透数学思想方法。
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。在教学过程中,我经常通过以下途径及时向学生渗透数学思想方法:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。例如量的计量教学,首要问题是要合理引入计量单位。作为课本不可能花大气力去阐述这个过程。但是作为教师根据教学的实际情况,适当地展示它的简单过程和所运用的思想方法,有利于培养学生的创造性思维品质和为追求真理而勇于探索的精神。例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。(2)在问题的解决过程中渗透。如:教学“鸡兔同笼” 这一课时,在解决问题的过程中,用图表、课件展示的方法让学生逐步领会“假设”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学 “梯形面积”这一单元之后,我及时帮助学生依靠梯形面积的推导过程回忆平行四边形的面积、三角形的面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。
三、让学生学会自觉运用数学思想方法。
数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式
Ⅱ 高中数学思想方法的培养策略
高中数学教学中,相同的知识内容可以应用多种数学思想,相同的数学思想 方法 也可以用于多种知识中。下面是我整理分享的高中数学思想方法的培养策略,欢迎阅读与借鉴,希望对你们有帮助!
1高中数学思想方法的培养策略
(一)在数学问题的解决过程中充分应用数学思想
数学教学的根本目的是运用数学知识解决相关问题。在数学问题的解决过程中,要充分应用数学思想,加强对数学问题的探索,寻求解决问题的具体办法与途径。教师在教学过程中要结合学生实际,根据教学内容,对学生进行恰当的引导,有意识地将数学思想运用到实际的解题训练过程中,以使学生找到解决问题的思路,提高学生的数学能力。
我们可在课堂教学过程中选取典型习题,有针对性地提高学生的自主探索能力。如在进行数学函数最值定义的学习过程中,教师可以以求函数y=x2应该是x的平方,在区间[1,2]中的最大值与最小值范围为例。学生在解决此类题的过程中,要先画出函数在[1,2]内的图像,教师在学生画图的过程中要求将R上全部图像画出,然后由学生进行讨论,区分曲线在不同区间上最值的不同求法,进而得出区结论。学生在这个过程中充分运用了分析以及数形结合的数学思想。
(二)在数学知识传授过程中充分应用数学思想
教师在教授数学知识的过程中要充分运用数学思想,帮助学生养成良好的学习习惯。高中数学教学内容主要分为两种类型:表层知识与深层知识。表层知识就是数学概念、数学公式、数学法则以及数学定理等基本内容;深层数学知识包括数学思想以及数学方法。学生在数学知识的学习过程中要根据掌握的知识进行深层次的学习与领悟。数学知识是数学思想方法的载体,教师通过数学知识的传授与学习,提高数学思想的应用,学生在学习表层知识的同时,要加强对深层知识的领悟。
如在学习函数的单调性与奇偶性相关知识时,教师可以通过让学生观察相关函数的图象,利用图象来理解函数的单调性与对称性,然后运用代数方式对其进行描述,进而让学生了解函数单调性与奇偶性的相关定义。在这个过程中,教师要层层渗透数学思想,引导学生在函数问题中应用数形结合的数学思想,提高学生对知识的理解能力。同时在教授指对函数性质的过程中,教师要结合指对函数图像进行分析,让学生自己 总结 得出性质,掌握指对函数与底数的关系,运用分类数学思想,解决实际问题。
(三)在高中数学知识复习过程中充分应用数学思想方法
高中数学教学中,相同的知识内容可以应用多种数学思想,相同的数学思想方法也可以用于多种知识中。因此,在数学知识复习、总结的过程中,教师要充分应用多种数学思想,锻炼学生的数学思维能力,提高学生对数学知识的提炼、概括、总结能力。如在复习数列相关知识的过程中,教师要充分体现函数与方程之间的转化,将等价转化、分类讨论等数学思想应用其中。
2高中提高数学成绩的思想方法
(一)通过数学史嫁接数学思想方法
数学史是进行数学学习和认识的一种工具,如果想要深入掌握数学思想、数学方法和数学概念的发展轨迹,加强对数学的认识并且建立整体的数学意识,那么适当的应用数学史作为指导和补充是必不可少的。数学史的功能和作用之一为数学学习和研究者指引方向,给他们以明鉴和启迪。例如,在进行解析几何或者数学坐标的内容学习时,可以先让学生们了解伟大的数学家笛卡尔:1619年在军营中生活的笛卡尔的思维和精神长时间处于一种非常兴奋的状态,他花费了自己大部分的宝贵时间一直在思考某个数学问题:能不能用代数计算来巧妙代替几何问题中的证明过程?如此就需要找到一种方法能成功连接代数和几何,将几何中的图形代数化,从而运用代数计算的途径去解决几何问题。
某一天,笛卡尔做梦梦见自己用一把金钥匙将欧几里德宫殿的大门打开以后,看见满地的珍珠非常耀眼,他用一根线串起了珠子去发现线断了,所有珠子消失了,就在此时,他看见空旷如洗的宫殿里一只苍蝇快速的飞着,苍蝇飞过在他眼前留下各种各样的曲线和一条条的斜线痕迹。梦中醒来的笛卡尔突然间恍然大悟:苍蝇飞过的痕迹不是正好说明了曲线和直线都可以通过点的不断运动来形成产生吗?通过这样的数学史的介绍,在增加了学生对学习的兴趣的同时,也渗透了数形结合这一思想给学生。
(二)概念学习中渗透数学思想方法
学习数学概念包括概念的形成和概念的同化,一般经过从具体到抽象,再到具体,先给出问题的实际背景和基本事实,引导学生从问题中分析、概括和抽象出相关的数学概念,为了更深地掌握概念的含义和概念的外延,要分别将概念的肯定和否定例证列举出来,此过程是一个由归纳到演绎的推断过程。
在高中数学的相关概念的产生和形成过程中,归纳法的应用很多,例如函数的奇偶性与单调性、对数与指数函数、子集、等差与等比数列、n次方根等各类概念的介绍。另外,利用概念的同化来进行数学知识的学习时,一些数学思想方法的运用也非常广泛,例如用映射的思想来定义函数、用函数的思想来看待数列、根据等差数列的相关定义类推出等比数列的概念定义等等。
(三)解题中运用数学思想方法
在解数学题时,需要引导学生来自觉运用数学思想方法,让学生在反复的训练和不断的完善中建立起自己的数学思想系统。例如化归思想方法的运用:一射手一次射中目标的概率是0.9,假设他每次击中目标都是独立的,连续 射击 四次求他至少射中一次的概率。
至少射中一次包括了一次、两次、三次和四次,可以将问题转化为其对立事件,即一次都没有射中,来解答,这样可以很容易求解出问题的答案。数学思想方法在解题中的运用除了上述正与反的转化,还有一般与特殊的转化、数与形的转化、主与次的转化及熟悉与陌生的转化等等。
3高中数学思想方法
1.与数学课程标准相结合,提高数学教师自身的数学思想方法素养
一个合格的中学数学教师要有扎实的基础知识、基本技能和较强的教学能力,同时还应具有丰厚的数学思想方法素养。不少数学家对教师提出过严格要求,如克莱因就创造了“双重遗忘”的术语,剖析中学教师的状况,提出进了大学忘中学数学,回到中学又忘了高等数学。他指出,中学数学教师要居于更高的优越地位去教授数学知识,这其中的寓意就是要求数学教师应具备良好的数学思维品质与素养。
2.与数学知识结合,将数学思想方法有机地渗透到教学计划和内容中
以数学知识为载体,将数学思想方法渗透到教学计划和内容之中,要明确每一阶段的载体内容、教学目标、展开步骤、教学程序和操作要点。数学教案则要就每一节课的概念、命题、公式、法则以至单元结构等教学过程进行渗透思想方法的具体设计。这不但要求教师通过目标设计、创设情境、程序演化、归纳总结等关键环节,在知识的发生和运用过程中贯彻数学思想方法,形成数学知识、方法和思想的一体化,还要求教师应充分利用数学的现实原型作为反映数学思想方法的基础。
3.与数学问题结合,在问题解决过程中激活数学思想方法
“问题是数学的心脏”,数学问题解决的过程实际上就是在数学思想的指导下,运用合理的数学方法探寻问题答案的过程。教学中,教师常常会碰到这样的情况:学生不仅具备问题解决所需的全部知识,也知道相应的解题方法,但仍然是苦苦思索不得其解,略经指点却又恍然大悟。这说明学生头脑中虽然具有相应的数学知识和 经验 ,但却不知道如何应用。其原因:一是学生头脑中的知识组织混乱,结构性差,运用时不能恰当表征。二是学生头脑中知识即使表征的合理,但应用时却不能激活认知结构中的数学思想和数学方法。
4.与“过程教学”结合,把发现和创造的思维方法教给学生。
数学教学应是数学活动过程的教学,突出过程,就是强调知识体系的形成过程,强调数学思维与方法的形成过程,强调分析与概括的拓展。所以,课堂教学要引导学生深层次地参与教学过程,让学生在观察、实验的活动中,通过比较、分析、归纳、类比、抽象等思维过程,完成知识的猜想和证明,使学生既加深对知识的理解,又学习到创造的策略和方法,从而激起求知欲望和创新的热情。
4高中数学解题思路和方法
在解题的过程中,是一个思维的过程。
一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,只要顺着这些解题的思路,就可以很容易的找到习题的答案。
做一道题目时,最重要的就是审题。审题的第一步就是读题。
读题时要慢,一边读、一边思考,要特别注意每一句话的内在含义,并从中找出隐含条件。很多人并没有养成这种习惯,结果常常会在做题的时候漏掉一些信息,所以在解题的时候要特别注意审题。
在做了一定数量的习题后,就会对所涉及到的知识、解题方法有比较清晰的了解。
这个时候就需要将这些知识进行归纳总结,以便以后的解题思路更加清晰,达到举一反三的效果,这样做数学题的速度就会大大提升了。
做题只是学习过程中的一部分,所以不能为了解题而解题。
解题时,脑海中的概念越清晰、对公式、定理越熟悉,解题的速度就越快。所以在解题时,应该先回归课本,熟悉基本内容,理解其正确的含义,接着再做后面的练习。
高中数学思想方法的培养策略相关 文章 :
★ 高中数学思想与逻辑:11种数学思想方法总结与例题讲解
★ 高中数学思想方法
★ 高中数学四种思想方法
★ 高中数学学习的思想和法则
★ 高中数学大题的解题技巧及解题思想
★ 高中数学教师怎么提高教学水平
★ 高中数学学习方法及技巧
★ 高考数学题解法思想指引
★ 高考文科数学的思想方法有哪些
Ⅲ 教学中怎么有效渗透数学思想方法
1、在学生知识形成发展过程中渗透。
数学知识都有内在逻辑结构,都按一定的规则、方式形成和发展,其间隐含着数学思想方法。教学中,在阐述知识形成和发展的同时应凸现数学思想方法。
例如教学求相差数时,先引导学生将8只杯与5个盖子用一对一的办法进行比较,其中有一部分杯子与盖子同样多,另外3只杯子没有找到盖子与之对应,说明杯子比盖子多三只,也就是8比5多3,这个3就是相差数,接着又发现求相差数可以用减法。
又如教学平行四边形面积时,学生发现用数方格的方法求平行四边形面积有困难,思路受阻,教师及时点拨能否把平行四边形转化成以前学过的图形来求。经过一番探索,学生用剪拼的办法,将平行四边形转化成长方形,而后又将平行四边形的底、高转化成长方形的长、宽,从而求出平行四边形面积。
这两个例子,前一个渗透了对应思想,后一个渗透了等积变形思想和转化思想。对应思想,等积变形思想,转化思想都是构建知识的“桥梁”,没有这座“桥梁”,新知识就无法构建。在新知识形成发展过程中,教师要及时把握渗透数学思想方法的契机,引导思维方向,激发思维策略,让学生领悟隐含于知识形成发展中的数学思想方法。
2、在实验操作中渗透。
实验操作是学生参与数学实践活动的重要手段。实验操作获得的数学思想方法更形象,更深刻,更能实现迁移,有利于提高学习能力。因此,在引导实验操作时,不能仅停留在为理解知识而操作,更要让学生知道为什么这样操作,也就是要领悟其中的数学思想方法。
例如在学生掌握长方体、正方体的体积计算公式后,出示一个不规则的铁块,让学生求出锻造这样一块铁块,需要多少材料?学生们认为只要求出它的体积就可以了。但是不能用长方体、正方体的体积计算公式直接计算,怎么办?不久就有学生提出,可以利用转化思想来计算出它的体积。通过小组讨论,动手实践,学生们的答案可谓精彩纷呈。
3、在问题解决中渗透。
“问题解决就意味着解题”。解题过程是从问题起始状态出发,经过一系列有目的,有指向的认知操作,达到目标状态的过程,也就是未知的新问题不断地转化为已知的旧问题的过程。教学中有意识地渗透一些数学思想方法,就能帮助学生理清解题思路,减少盲目性,少走弯路,提高学习效率。
一般情况下,单一思路不通时,就要考虑走另外一条路。凡此种种,都是“多角度看问题”的思想方法,或者称之为“由此及彼”的思想方法的运用。学生掌握了这种数学思想方法,思维会更活跃,更灵活。恰当运用一些数学思想方法,不仅能提高解题效率,而且能激发学生的求知欲和创新精神。
4、加强训练。
通过课堂教学的渗透,学生可以领悟到一些数学思想方法,但要将数学思想方法转化为能力,还要结合知识技能的练习进行训练。通过训练,真正使学生从“朦朦胧胧”过渡到“明明白白”,直至主动运用。
适时点明。
首先在渗透中或练习中,要适时地、自然地点明数学思想方法,有的还可以给出名称及适用范围。
例如:小数乘法法则是根据因数与积的变化规律,转化成整数乘法来算的。小结时告诉学生:新知识都是在旧知识基础上学习的,只要找到新旧知识的联系,未知就能转化为已知,这种解决问题的方法称为转化思想。转化思想在今后学习中经常用到。寥寥数语点明了转化思想的实质。教学中一旦点明数学思想方法,就应该在后续教材或练习中让学生应用。例如:小数乘法之后学习小数除法,就应该让学生用转化的办法自己解决除数是小数的除法计算问题。几何图形的面积、体积公式推导中的转化思想、等积变换思想、类比思想、模型思想等应用较多,可以集中训练。
合理练习。
设计好练习对于学生获得数学思想方法及提高应用水平至关重要。在设计练习的目的上,除考虑知识技能目标外,教师也应考虑数学思想方法的训练目标。数学思想方法训练目标可以是单一的,也可以是综合的。
数学思想方法的获得,一方面要求教师有意识地渗透和训练,另一方面更多地要靠学生自身在反思过程中领悟。训练中,要求学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思考方法,走过哪些弯路,有哪些容易发生(或发生过)的错误,该记住哪些经验教训等。只有让学生对数学思想方法有所理解,才能逐步由量的积累实现质的飞跃。
Ⅳ 如何领悟数学知识中的数学思想方法
在“有形”的数学知识中,必定蕴含着“无形”的数学思想方法。数学知识是一条明线,写在教材里;数学思想方法是一条暗线,体现在知识与技能的形成过程中。如何结合具体内容进行数学思想方法渗透、渗透哪些数学思想方法、怎么渗透、渗透到什么程度等,都会成为小学数学教师教学行为中的现实问题。作为课堂引领的小学数学教师,该如何调控自己的教学行为,让数学知识与思想方法两条线在数学课堂中齐头并进呢?
1、在操作中交流比较,感悟有效渗透数学思想方法必要性。
让我们走进两位数学老师的“三角形的面积”课堂,一起感悟不同的教学定位演绎出的不同教学效果。
[案例甲]
教师课前让每位学生准备两个完全一样的三角形。
上课时教师出示带有方格的几个三角形,问:谁能算出它们的面积?(学生用数方格的方法很快算出结果)
接着,教师出示不带方格的几个三角形,让学生算出它们的面积。(学生感到困惑,教师抓住时机,告诉学生下面共同探讨这个问题)
于是,教师请学生拿出课前准备好的两个完全一样的三角形,问:你能想办法把两个完全一样的三角形拼成已学过的图形吗?
(学生动手操作,获得以下结果。)
生1:我拼成了平行四边形。
生2:我拼成了正方形。
生3:我拼成了长方形。
5.师:拼成的图形与原三角形有什么关系?
6.师生问答推导出三角形的面积公式。
[案例乙]
教师课前布置学生每人准备一把剪刀,给各小组准备完全一样的(锐角、钝角、直角)三角形各两个和形状、大小各不一样的三角形6个。
上课时,老师让同学们回顾一下,平行四边形的面积公式我们是怎样推导的?
生:把平行四边形转化成长方形,然后推导出来的。
师:好,那么你们能不能把三角形也转化成我们学过的图形,然后推导出三角形的面积计算公式?(学生4人小组,动手拼摆、割补三角形)
全班交流后,学生获得以下答案。
生1:我们发现一个锐角三角形和一个钝角三角形不能拼成已学过的图形。(边说边演示)
生2:我们也发现两个不一样的直角三角形不能拼成已学过的图形。(边说边演示)
生3:我们用两个完全一样的直角三角形拼成了长方形。(边说边演示)
生4:我们用两个完全一样的直角三角形拼成的是正方形。(边说边演示)
生5:我们用两个完全一样的直角三角形拼成的可是平行四边形。(边说边演示)
然后,又有几名学生分别用两个完全一样的锐角三角形、钝角三角形演示说明也能拼成已学过的图形。
师:还有其他的发现吗?
生6:一个三角形通过割补也能转化成已学过的图形。(边说边演示)
师:你真了不起!
【反思与启示】:从甲教师身上看到的是“教教材”的影子,只是为了教教材而教,按照教材的安排顺序组织教学,整个教学片断缺少学生自主探究的空间,其根本原因是缺少数学思想方法的渗透,无法激发学生的数学思考。而乙教师通过小组合作探究活动,通过分组探究讨论、全班交流,学生充分感受到了“转化”的思想方法,在课堂中数学思考的广度与深度明显要优于前者,因此,我们认为在小学数学课堂中有必要进行渗透数学思想方法的研究。
2、在情境中多次体验,逐级递进提炼数学思想方法。
从学生的数学思想形成过程中,我们不难发现学生的数学思想不可能向数学知识那样一步到位,它需要有一个不断渗透、循序渐进、由浅入深的过程。在这个过程中,需要我们教师做一个“过程”的加强者,不断用我们的数学思想“敲打”学生的思维、让学生在一次次的“敲打”过程中,不断的积累、不断的感悟、不断的明朗,直到最后的主动应用。
以“化曲为直”思想在《认识周长》一课中的有效渗透为例,谈如何围绕“化曲为直”思想循序渐进地开展教学活动。
【教学片断】1:预习设计测量圆边线的长,初步感知“化曲为直”思想。
师:请同学们从学具袋中取一个圆。提问:你能想办法知道圆一周边线的长吗?
生1:我沿着直尺滚一圈,就能知道圆一周边线的长。
生2:我用绳子先围一围,再测量绳子的长就能知道圆一周边线的长。
生3:我先将圆对折两次,再用绳子量圆弧的长,然后后用尺子量出绳子的长,最后乘4就得到圆一周边线的长。
【设计意图】通过预习让学生初步感知,像圆这样由曲线围成的图形的周长,我们可以想办法通过折一折、滚一滚、围一围、量一量等办法把它们一周的边线化曲为直测量出它的周长。
【教学片断】2:新授设计测量树叶、树干的周长,充分体会 “化曲为直”思想。
谈话:秋天到了,树叶凋零了,今天树叶成了我们学习的好帮手。能用你手中的工具来测量出你准备的树叶的周长吗?
Ⅳ 数学思想方法如何渗透到教学中去
课堂教学应着眼于学生潜能的发挥,促进学生有特色的发展。使学生富有探究新知、不断进取的精神。下面是我为大家整理的关于数学思想 方法 如何渗透到教学中去,希望对您有所帮助。欢迎大家阅读参考学习!
1数学思想方法如何渗透到教学中去
(一)渗透如数学思想的概念显得较为模糊
因为在小学教学阶段,教师教授的数学知识都是比较简单的,因此数学思想自然也就会显得比较模糊,在小学数学课堂教学相关工作进行的过程中,从事数学教学相关工作的教师,想要将数学思想渗透到较为模糊的概念中是比较困难的,在日常教学相关工作进行的过程中,一般情况之下都是不会予以数学思想教学工作充分的总是的,单单是将数学教学当成是基础性数学知识教学工作,仅仅在教学相关工作进行的过程中传授给学生一些解答问题的方式方法,基本上是不会在数学思想的层面上对学生进行引导的,从而在此基础之上想要使得数学思想和小学数学教学有机的相互融合在一起就变得比较困难。
(二)学生在学习数学的过程中基本上不会做出 反思
小学生正处于的是形象思维为主的这样一个阶段,在学习数学知识的过程中并没有形成较为明确的认识和观点,从而在此基础之上想要对某些抽象的数学概念形成明确的了解就会变得比较困难,因此在学习数学的过程中一般情况之下都是停留在最为基础的模仿式学习阶段中的,依据教学教学流程展开模仿式数学学习,在此基础之上学生形成的认识观点自然也是较为模糊的,进而在模仿式学习的基础上,想要在学习工作完成之后对数学学习做出反思也就是一件比较困难的事情。
(三)对知识进行 总结 和整理的意识是较为薄弱的
小学数学教学阶段中包含的知识点是十分琐碎的,当教师开展教学相关工作的过程中想要将各个知识点串联起来也就是一件比较困难的事情,当教师开展课堂教学相关工作的过程中,一般情况之下仅仅会在复习的时候开展知识点梳理工作,在日常课堂教学相关工作进行的过程中,一般情况之下都是不会向学生阐述各个知识点之间呈现出来的相互关系的,学生在日常学习的过程中自然也就难以积累下来丰富的 经验 及解决模式,因此教师想要使得课堂教学相关工作的效率得到一定程度的提升自然也就比较困难。
2渗透到教学中的方法
1.在研究探索知识的过程中,着重于将数学思想方法渗透到学习中
教师应该加强在学生学习过程中教学的力度,一定要凸显出数学知识中一些定理、公式、性质等得来的探究过程,进而使同学们把过程转换成解决问题的思想和方法。知识形成并发展的过程中应穿针引线地将数学思想方法渗入其中,让学生能够掌握简单的基础知识,也能体会深层数学原理、性质的探索过程,形成良好的解题思路,使学生在数学方面的造诣达到一个新的高度。教师在授课过程中,要引导学生自觉地对数学知识、方法进行探究、学习,主动追溯知识的探索过程,感悟数学知识,将数学思想方法与数学知识的学习融会贯通,使其在数学方面达到质的飞跃。
2.在解题和讲解例题的过程中渗透数学思想方法
在授课中,教师讲解例题并且举一反三,每解决一个问题和例题就为学生归纳总结出一种方法,久而久之,学生就会形成新的解题思路、学会新的解题方法。对于初中这个阶段来讲,许多典型例题被设计出来,许多出色的题目也出现在每年中考题中,老师有效地挑选具有启示性和创造性的题目进行训练,再将数学思想和 教学方法 展示在对这些问题的讲解和探究中,可以培养学生的解题能力。
3.按时总结,渐进地消化数学思想方法
在初中的数学知识体系中蕴含着数学思想,不同的数学思想通常蕴藏于一个内容中,而同一个数学思想方法又常常被运用于许多不同的基础知识中,教师在对一道题目进行分析后,要清晰地向学生展示出教师在解决这道题时的思路以及解决这道题需要哪些我们原先学习的知识以及解题方法。与此同时,要引导学生对新方法、新思路的思考,锻炼其发散性思维。老师通过“一题多解”及举一反三等方式及时巩固,使学生慢慢内化这些数学思想、解题思路等。
3解题渗透数学思想方法
(1)注意分析探求解题思路时数学思想方法的运用。解题的过程就是在数学思想方法的指导下,合理联想提取相关知识,调用一定数学方法加工、处理题设条件及知识,逐步缩小题设与题干之间的差异的过程。解题思想的寻求就自然是运用数学思想方法分析、解决问题的过程。
(2)注意数学思想方法在解决典型问题中的运用。如解题中求二面角大小最常用的方法之一就是:根据已知条件,在二面角内寻找或作出过一个面内一点到另一个面上的垂线,过这点再作二面角的棱的垂线,然后连结两个垂足。这样平面角即为所得的直角三角形的一锐角。这个通法就是在立体问题化平面的转化思想的指导下求得的,其中三垂线定理在构图中的运用,也是分析、联想等数学思维方法运用之所得。
(3)用数学思想指导知识、方法的灵活运用,进行一题多解的练习,培养思维的发散性、灵活性、敏捷性;对习题灵活变通、引伸推广,培养思维的深刻性、抽象性;组织引导对解法的简捷性的反思评估,不断优化思维品质,培养思维的严谨性,批判性。对同一数学问题的多角度的审视引发的不同联想,是一题多解的思维本源。丰富合理的联想,是对知识的深刻理解,及类比、转化、数形结合、函数与方程等数学思想运用的必然。数学方法、数学思想的自觉运用往往使我们运算简捷、逻辑严密,是提高数学能力的必由之路。
4提高课堂教学效率
重视备课,明确教学目标
如果说数学是一门艺术,那么备好课是搞好艺术的基本条件。不经武装的战士上战场,只能束手就擒;没有充分准备的教师上讲台,充其量是"信口开河",决谈不上驾驭课堂的能力,作为教师,传授知识是我们的责任,出色的备课也是我们实行责任的前提。那怎么去用心备课呢?在此我只谈谈自己的感悟:首先,选好合适的起点,起点就是新知识在原有知识基础上的生长点。起点要合适,采有利于促进知识迁移,学生才能学,才肯学。起点过低,学生没兴趣,不愿学;起点过高,学生又听不懂,不能学。
其次,明确重点,每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在备课时,应该在课本上做标记。重点往往是新知识的起点和主体部分。备课时要突出重点。一节课内,首先要在时间上保证重点内容重点讲,要紧紧围绕重点,以它为中心,辅以知识讲练,引导启发学生加强对重点内容的理解,做到心中有重点,讲中出重点,才能使整个一堂课有个灵魂。最后,注重联系,即新旧知识的联系。数学知识本身系统性很强,章节、例题、习题中都有密切的联系,要真正搞懂新旧知识的交点,才能把知识融会贯通,沟通知识间的纵横联系,形成知识网络,学生才能举一反三,更有利于灵活地运用知识。作为教师,切记备课的重要性,一切的一切都要从备课开始,出色的备课是成功课堂教学的前提。
重视教学方法的作用,加强学法的指导
曾经看过这么一句话,说的是"未来的文盲不再是不识字的人,而是没有学会怎样学习的人"。这充分说明了 学习方法 的重要性,它是获取知识的金钥匙。学生一旦掌握了学习方法,就能自己打开知识宝库的大门。所以我们应该改进课堂教学,运用正确的教学方法去指导学生的学法,传授给学生的不仅仅是知识,更重要的是学习方法。同时每一节课都有每一节课的知识点,都有需要掌握的重点内容。教师能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。我们可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。有时,在一堂课上,要同时使用多种教学方法。俗话说:"教无定法,贵要得法"。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。教会学生的学习方法,是我们作为教师的责任。
综上所述,学好数学对学生将来的发展起到至关重要的作用,作为教师,我们要认真备课,全身心的投入课堂,创造最佳的课堂气氛和环境,充分调动学生的内在积极因素,激发求知欲,千方百计使学生的注意力高度集中,同时还应该不断地努力提高自己的能力,在有限的时间内,将知识最大化的传授给学生,提高课堂教学效率。
数学思想方法如何渗透到教学中去相关 文章 :
★ 高考复习中应重视数学思想方法的渗透
★ 数学教学方法渗透六大核心素养
★ 高中数学思想和数学方法
★ 数学教学如何渗透六大核心素养
★ 初中数学思想方法教学论文
★ 小学学习数学的思想方法
★ 数形结合数学思想方法
★ 核心素养如何落地数学教学
★ 核心素养如何融入数学课堂教学
Ⅵ 如何在数学课堂上渗透数学思想
《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》——小学数学教学中渗透数学思想方法思考与实践汇报:兆麟小学农丰小学兰陵小学今天由我们三人汇报的题目是:《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》中国科学院院士、着名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”数学知识和数学思想方法作为小学数学学习的两条线索,一明一暗,相互支撑,其中数学思想方法提示了数学的本质和发展规律,可以说是数学的精髓。下面我们就谈谈数学思想方法。
一、为什么要在教学中渗透数学思想方法1、基本数学思想方法对学生的发展具有重要意义一位教育学家曾指出:“作为知识的数学出校门不到两年可能就忘了,惟有深深铭记在头脑中的是数学煌精神和数学的思想、研究方法、着眼点等,这些随时随地发生作用使学生终身受益。”数学的思想方法是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生思维品质,对数学学科的后继学习,对其他学得的学习,乃至学生的终身发展有十分重要的意义。在小学数学教学中有意识地渗透一些基本数学思想方法,是增强学生数学观念,形成良好思维素质的关键。不仅能使学生领悟数学的真谛,懂得数学的价值学会数学地思考和解决问题,还可以把知识的学习与能力的培养、智力的发展有机地统一起来。2.渗透基本数学思想方法是落实新课标精神的需求数学课程标准把“四基”:基本知识、基本技能、基本思想、基本活动经验作为目标体系。基本思想是数学学习的目标之一,其重要性不言而喻。新教材是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验等直观手段解决这些问题。从而加深学生对数学概念、公式、定理、定律的理解,提高学生数学能力和思维品质,这是数学教育实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学新课程改革的真正内涵之在。
二、课教材渗透了哪些数学思想小学数学中最上位的思想就是演绎和归纳,是数学教学的主线。还有一些常用的数学思想方法:对应思想、——是指对两个集合元素之间联系的把握。许多数学方法来源于对应思想。比如学生在计算练习时常常有10?20×2?30?40?50?形式出现,这其实就体现了对应的思想。如数轴上的一个点就对应一个数,任何一个数都能在数轴上找到相对应的点,一一对应,呈现完美。符号化思想、——数学发展到今天,已成为一个符号的世界。英国着名数学家素曾说:“什么是数学?数学就是符号加逻辑。”符号化思想即指人们有意识地、普遍地运用符号化的语言去表述研究的对象。符号化思想在整个小学都有较多的渗透,例如:阿拉伯数字:1、2、3、5、6、……+、–、、等运算符号;>、<、=、等表示关系的符号;()、[]等括号;表示数的字母:x、y、z等。字母表示公式:长方形、正方形的面积S=abS=a²字母表示计量单位符号:m\cm\dm\mm\g\km等。集合思想——把一组对象放在一起作为讨论的范围,这就是集合的思想。如:一年级教材在教孩子认数的时候,用一个圈把一些图画圈在里面,这就是孩子最初所接触到集合雏形,也是第一次对小学生渗透这种集合思想。在以后后的教学中慢慢体现并集、差集、空集等思想。极限思想——我国古代就对极限思想的思考,古代杰出的数学家刘徽的“割圆术”就是利用极奶子思想的典型。极限思想是研究变量在无限变化中的变化趋势的思想,运用这一思想,人们的思维可以从有限空间向无限空间,从静态向动态发展,从具体到抽象升华。统计思想——小学数学中的统计思想主要体现在:简单的数据整理和求平均数,简单的统计表和统计图,学生在会整理、制表、作图的同时要能从数据、图表中发现数学问题和数学信息,得出相关的结论。、假设思想——是先对题目标中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。比较思想——是数学教学中常见的思想方法之一,也是促进学生思维发展的手段。
在数学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快找到解题途径。类比思想——是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边行面积公式和三角形面积公式。这种思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
转化思想——是一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到。
分类思想——体现对数学对象的分类及其分类的标准如自然数的分类,三角形按边分按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。
数形结合思想——数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的帮助分析数量关系。代换思想——他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
可逆相思——它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题的方法,有时可以代线段图逆推。如:一辆汽车从甲地开往乙地,第一小时行了1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
化归思想方法——把有可能解决或示解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
变中抓不变的思想方法——在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解,如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
数学模型的思想方法——是对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析等过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
这些数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。下面我们就结合自己对数学思想方法的学习与实践,与大家一起交流。三、让课堂彰显思想的魅力首先说说备课:备课时要研读教材、明确目标、设计预案,充分挖掘数学思想方法如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。
因此我们在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中。其实,每册教材都有数学思想方法的渗透,我们每册选取有代表性的单元。这相对所有教学内容只是冰山一角。为此,我在研读教材时,常常要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等。只有我自己做到胸有成竹,方能给学生渗透相应的数学思想。2上课:创设情境、建立模型、解释应用,渗透数学思想方法数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。
以下面三种课型为例。①新授课:探索知识的发生与形成,渗透数学思想方法如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。在数学教学中,解题是最基本的活动形式。任何一个问题,从提出直到解决,需要具体的数学知识,但的是依靠数学思想方法。因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法。如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵。到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思。如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个。如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题。然后又将问题改为“只种一端、两端不种时分别种几棵”,学生运用同样的方法兴趣盎然地找到了答案。以上问题解决过程给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题。通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用。因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识。②练习课:经历知识的巩固与应用,渗透数学思想方法数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助图片用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。如我在教学四年级“看谁算得巧”一课时,学生计算“1100÷25”主要采用了以下几种方法:①竖式计算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5④1100÷25=11×(100÷25)⑤1100÷25=1100÷100×4⑥1100÷25=1000÷25+100÷25。在学生陈述了各自的运算依据后,引导学生比较上述方法的异同,结果发现方法①是通法,方法②——⑥是巧法。方法②——⑥虽各有千秋,方法③、④、⑥运用了数的分拆,方法②属等值变换,方法⑤类似于估算中的“补偿”策略,但殊途同归,都是抓住数据特点,运用学过的运算定律、性质转化为容易计算的问题。学生对各种方法的评价与反思,就是去深究方法背后的数学思想,从而获得对数学知识和方法的本质把握。
新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养。③复习课:学会知识的整理与复习,强化数学思想方法复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。如我在教学五年级“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流。交流之后我又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后(如下图),再次引导学生将这些平面图形面积计算。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”。(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法?结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。
Ⅶ 请你结合初中数学实例谈谈在初中数学教学中如何渗透数学思想方法
1.在教学中应用多媒体进行渗透。
在现阶段的教育领域当中,多媒体教学手段逐渐渗透了进来,它的有效利用为创新型课堂教学提供了良好的载体。所以说,在日常的初中数学教学中,教师可以利用先进的多媒体技术来增加课堂的趣味性,使课堂变得生动形象,从而促进数学思想方法的科学渗透。比如在讲解“轴对称”这一部分内容的时候,教师可以课前准备好相关的轴对称物体的资料,然后在课上通过多媒体以视频和图片的方式展现出来。比如现实生活中的对称建筑物,还有剪纸、叶子等等。另外,教师还可以鼓励学生借助多媒体进行实例的查找,这样不仅可以加深学生对于知识的理解,还能够提升学生的兴趣和思维能力。
2.在探究活动中,进行数学思想方法的渗透。
初中生正处在一个学习的转型期,他们的知识水平和学习能力还有待于进一步培养和提高。因此可能一时无法适应初中的快节奏的上课和学习模式。这可能会使得学生无法立刻领会教师所讲的内容,甚至引起课堂教学效果的不明显。而探究式的教学活动,是在教师的带领下,运用数学的思想方法,让学生主动去探索知识的重难点。它不仅能够开发学生的潜能,还能培养学生的智力,能够让学生快速掌握课堂所学的知识。比如在教授“旋转”这一章的时候,为了加深学生的印象,教师可以恰当的举出一些生活当中的例子,比如汽车轮子,钟表的指针,然后向学生提出问题,让学生自己找出这些物体的运动规律,从而理解知识。
3.在合作学习理念中渗透数学思想方法。
教学方法涵盖教和学两方面内容,教育的最终目的是实现学生的全面发展。因此,教师在教学过程中必须考虑到学生性格特点、学习规律,设计自己的教学思路。如在讲授“平面几何”时,要学会利用学生比较熟悉的生活现象去解释一个概念,并将学过的知识和概念进行总结。如何利用学生身边的现象引出几何构造图形,这些都必须和学生的生活中的实际相结合,才能达到最佳效果。学生通过合作性的讨论,从而使得对几何图形的认识变得更加具体化,有利于学习成绩的提高。
结语
综上所述,在数学教学中进行数学思想方法的渗透,它不仅仅代表着数学学科教学的进步,也是发展素质教育的重要体现。因此,要求教师在熟练掌握数学思想方法的前提下,坚持合理有序的原则,在课堂教学的过程中进行科学的渗透。以此发挥出学生在教学过程中的主体地位,加强他们的思想认识,帮助学生打下牢固的数学基础,并促进数学学科的未来发展。
Ⅷ 在数学教学中怎样渗透思维方法
一、在备课环节中渗透
教师要把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。对教材中的每一章节,都要考虑如何结合具体内容进行数学思想方法的渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度。教学中,教师要站在数学思想方面的高度,对教学内容,用恰当的语言进行深入浅出地分析,把隐蔽在知识内容背后的思想方法提示出来。
二、新课讲授中渗透
深入挖掘隐含在教材里的数学思想方法,精心设计课堂教学过程,展示数学思维过程,这样才有助于学生了解其中数学思想方法的产生、应用和发展的过程。不同的教学内容,可根据其特点,选配不同的数学思想方法进行教学。教学过程中,通过以下途径及时向学生渗透数学思想方法:在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。
三、在学生解题中渗透
数学教学,不仅是学生有效地运用数学知识、探寻解题的方向和入口,对培养人的思维素质有着特殊不可替代的意义。新授课中属“隐含、渗透”阶段,练习中进入明确、系统的阶段。学生解题过程里,不但对已掌握的数学知识及数学思想方法会起到巩固和深化的作用,还从中归纳提炼出新的数学思想方法。思想方法的教学过程首先是从模仿开始,学生按照例题示范程序与格式解答相同类型的习题,实际上是思想方法的运用。
四、在归纳总结中渗透
课堂教学小结、单元复习时,适时对某种数学思想方法进行概括和强化,可使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的精神实质。
在章节小结、复习的数学教学中,注意从纵横两个方面,总结复习数学思想与方法。一方面是课中有意地渗透,另一方面是靠学生在反思总结中深刻领悟。在总结延伸某一思想方法的时候,教师要有意识地引导学生自觉地反思自己的思维过程,反思自己是怎样发现问题、分析解决问题的。逐步体会数学思想方法的精神实质,提高自觉应用意识。
Ⅸ 如何引导学生感悟数学思想方法
摘要:数学思想方法是数学的灵魂,两次课标的修改看出对数学思想方法的关注,这是一种全新的教育观,要引起教师的重视并加以研究落实。我们学校课题组研究了数学思想方法的教材体系,并在课堂教学中予以体现。
关键词:数学思想方法感悟数学素养提升
数学思想方法是数学的灵魂,我们的数学课堂,应该致力于追求数学思想方法的价值引领,充分挖掘教材中的数学思想方法,在教学中有意识、有效地加以渗透,让学生在潜移默化中去领悟、运用,并逐步内化为数学思维品质,进而提升学生的数学素养。小学数学青岛版教材设置了专题《智慧广场》,旨在让学生了解与掌握一些基本的解决问题的策略与方法,凸显数学思考,促进学生思维发展。我们学校数学课题组以“感悟数学思想方法,提升学生数学素养”为课题,深入研究《智慧广场》这种课型的课堂教学,有了一些自己的想法,总结一下我们的做法供同行们商榷。
一、挖掘教材中蕴含的数学思想方法
研究中我们坚持教材分析的整体性。作为小学数学教师,我们应该深刻理解小学数学的知识体系,能够从数与代数、图形与几何、统计与概率、实践与综合应用四个方面,通晓小学数学全部的教学内容,逐步了解各部分渗透的数学思想方法,以便渗透时逐步推进,避免顾此失彼。因此,在研究中,我们坚持教材研究的整体性,认清教材特点,梳通教材脉络,理清教材思路,从整体上构建教材中数学思想的立体框架。
青岛版修订教材设计了明、暗两条线。1.暗线,即将基本的数学思想方法渗透于各单元知识教学之中。使学生在学知识的过程中,不仅领略到数学思想方法的魅力,而且还能从数学思想方法的角度,理性地认识数学规律,提升数学思考力;2.明线,即单独设置栏目与专题,助推“思想方法”目标的有效落实。一是保留原教材“聪明小屋”栏目,安排了诸如找规律、简单的推理等内容,给学生提供了一个自主探索平台,促进学生思维的发展。“聪明小屋”栏目中的题目,大都是一些运用小规律、小策略解决的问题,由学生自主探究就可以解决;二是新增“智慧广场”专题,梳理出小学数学基本的数学思想方法,进而举一反三,增长学生聪明才智。
课题研讨中,我们充分抓住这两条线,同时推进,老师们梳理了智慧广场专题教材体系、聪明小屋编排,便于从整体上把握方法结构;接着又梳理了各教材在单元体系中蕴含的思想方法,把散落于教材中的思想方法提炼出来,便于教师从整体上构建立体框架。
二、抓住核心概念成就课堂亮点
比如三年级《周期的问题》一课,我们根据教材的结构和编写特点,以及三年级学生的认知和心理特点,巧妙处理了以下两个问题,有效地凸显了课程标准中的几个核心概念:模型思想,推理能力,应用意识和创新意识。
1.关注学生探索过程,引导学生有效建模。
本堂课,我们注重突出学生自主建模的全过程,在一系列的数学活动中,让学生体验了建模准备、自主建模、模型应用再到模型拓展的数学学习模式。
首先,建模准备。为保证学生自主建模活动的高效开展,我们先引领学生建构现象模型,在轻松的翻动日历中,通过观察与分析,认识一周为7天的周期现象,感知时间的周期现象的特点。
第二,自主建模。在这一阶段,我们只是向学生呈现了实际问题原型,而问题的探索与解决都由学生自主完成。学生能够探索出列举、推算,计算等方法;学生在对比方法时、在方法梳理时主动提炼模型。这一系列的数学化历程都是学生自主建模的过程。
第三,模型应用。学生通过上述数学活动,自主建构数学模型之后,教师及时引导学生,应用模型解决问题。
最后,模型拓展。全课结束前让孩子找生活中的周期现象,使学生对周期模型的探索之情还将延续,学生所建模型的层次也将不断上升延伸。
这样的设计,有利于学生经历完整的建模过程,使学生充分地体验数学学习的过程,建立模型,由此积累数学学习的经验,从而建立数学学习的信心。
2.关注数学思想方法,注重梳理提升建构。
(1)以点串线,对本课的方法进行梳理提升。在所有的方法交流完之后,继续引领学生进行梳理,把这三种方法整理在一起,然后让学生进行观察发现:仔细观察列举,推算,计算这三种方法你有什么发现?学生就会对这些方法进行对比,发现各种方法的优缺点,能够促使学生对方法主动地进行优化。同时引导学生发现这几种方法都利用了一个周期是7天这个规律,再更深层次把握解决周期问题方法的实质。
(2)以点带面,对整个方法体系进行建构归网。其实时间的周期问题并不是孤立存在的,有一定的知识基础的。二年级时,学生学过了一个智慧广场——图形的周期问题,还学会了一一列举、表格列举等解决问题的方法,本节课是周期问题的进一步深化和应用。将刚学知识方法与以前的知识方法建立联系,形成网络,就尤为重要了。所以我们又借助微视频,将图形的周期问题和时间的周期问题放在一起进行对比梳理,能够引导学生对周期问题有更深的把握,对解决这类问题的方法形成了一种模式,有效的帮助学生积累数学活动经验,建立数学活动模型。这一有效梳理,给学生形成一个方法串,有助于帮助学生策略的提升和方法的梳理建构、归网,促进学习的方法内化。