❶ 数学里面什么叫因数,什么叫倍数
一整数被另一整数整除,后者即是前者的因数。
例:6÷2=3 2和3就是6的因数。
一个整数能够把另一整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
拓展资料:
假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称c为a、b的倍数。在研究因数和倍数时,不考虑0。
公因数
定义:两个或多个整数公有的因数叫做它们的公因数。
两个或多个整数的公因数里最大的那一个叫做它们的最大公因数。
推论:1是任意个数的整数之公因数。
两个成倍数关系的非零自然数之间,小的那一个数就是这两个数的最大公因数。
补充:
1 整除:若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说b能整除a),记作b|a。
2 质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大于1的自然数中,除了1和此整数自身外两个因数,无法被其他自然数整除的数)。
3 合数:除了1和它本身还有其它正因数。
4 1只有正因数1,所以它既不是质数也不是合数。
5 若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
6 公因数只有1的两个非零自然数,叫做互质数。
7 1个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。
8 所有不为零的整数都是0的因数。(还有争议)
9 2是最小的质数。
10 4是最小的合数。
❷ 什么叫倍数
倍数 ①一个整数能够把另一整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
②一个数除以另一数所得的商。如a÷b=c,就是说a是b的c倍,a是b的倍数。
3 一个因数能让他的积整除,那么,这个数就是因数,他的积就是倍数。
3 × 5 = 15
↑ ↑ ↑
因数1因数2 倍数
例如:A÷B=C,就可以说A是B的C倍
③一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集.
❸ 什么是倍数
倍数有三种解释:
1、一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
2、一个数除以另一数所得的商,如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。
3、一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
(3)数学中什么是倍数扩展阅读
注意“倍”和“倍数”的区别:
1、“倍”指的是数量关系,它建立在乘除法概念的基础上。
例如:男生有10人,女生有30人,因为“10×3=30”或者“30÷10=3”,就可以说,女生人数(30)是男生人数(10)的3倍,也可以说,男生人数(10)的3倍等于女生人数(30)。
“倍”其实表示的是两个数的商(这个商可以是整数、小数、分数等各种表现形式)。
2、“倍数”指的是数与数之间的联系,它建立在整除概念的基础上。
例如,30能被6整除,30就是6的倍数。可见,“倍数”是不能独立存在的(具有特定的指向性),而且对数的形式有特别的要求(必须为整数)。
同时,30也是6的5倍,因为6×5=30,“6×5”表示6的5倍。所以从这个角度来说,“倍”的涵义应宽泛于“倍数”,后者可以视为前者在特定情形下的一种表现。
❹ 什么是倍数
①一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
②一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。
③一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
❺ 数学中的倍是什么意思
数学中的倍是指:某数的几倍等于用几乘某数 。
一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
数学中增加一倍的意思就是变成原来的两倍,比如说原来一个数是2,那么它增加一倍,就是增加2,也就是变成了4,刚好是原来的2倍。
(5)数学中什么是倍数扩展阅读:
7的倍数:
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就上述“截尾、倍大、相减、验差”的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
8的倍数
一个数的末三位是8的倍数,这个数就是8的倍数。
7256。256÷8=32,是8的倍数。7256÷8=907
9的倍数
若一个整数的数字和能被9整除,则这个整数能被9整除。
❻ 什么是倍数
倍数和因数是相互存在的,不能独立存在,在整除的前提条件下,我们就说一个数是另一个数的倍数。+
❼ 什么叫因数 什么叫倍数
1、倍数:一个整数能够被另一个整数整除,那么这个整数就是另一整数的倍数。
(1)一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
(2)一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。
(3)一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
2、因数:因数,数学名词。
假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。反过来说,我们称c为a、b的倍数。在研究因数和倍数时,不考虑0。
在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。
事实上因数一般定义在整数上:设A为整数,B为非零整数,若存在整数Q,使得A=QB,则称B是A的因数,记作B|A。但是也有的作者不要求B≠0。
例如:2X6=12,2和6的积是12,因此2和6是12的因数。12是2的倍数,也是6的倍数。
(7)数学中什么是倍数扩展阅读
1、一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。
2、一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。
3、1是任一自然数(0除外)的因数。也是任一自然数(0除外)的最小因数。
4、一个数的因数最少有1个,这个数是1。除1以外的任何整数至少有两个因数(0除外)。
5、一个数的因数都小于或等于他本身,一个数的倍数都大于或等于他本身。
6、一个数的最小倍数=一个数的最大因数=这个数
❽ 倍数的概念是什么
倍数的概念是一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。
一、倍数
1、定义:
一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。
2、公倍数:
两个或多个整数公有的倍数叫做它们的公倍数。两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数。
3、特征:
(1)、2的倍数:
一个数的末尾是偶数(0,2,4,6,8),这个数就是2的倍数。
如3776。3776的末尾为6,是2的倍数。3776÷2=1888
(2)、3的倍数:
一个数的各位数之和是3的倍数,这个数就是3的倍数。
如4926。(4+9+2+6)÷3=7,是3的倍数。4926÷3=1642
(3)、4的倍数:
一个数的末两位是4的倍数,这个数就是4的倍数。
如2356。56÷4=14,是4的倍数。2356÷4=589
(4)、5的倍数:
一个数的末尾是0或5,这个数就是5的倍数。
如7775。7775的末尾为5。7775÷5=1555
(5)、6的倍数:
一个数只要能同时被2和3整除,那么这个数就能被6整除。
4、规律:
任意两个奇数的平方差是8的倍数。
证明:设任意奇数2n+1,2m+1,(m,n∈N)
(2m+1)^2-(2n+1)^2
=(2m+1+2n+1)*(2m-2n)
=4(m+n+1)(m-n)
当m,n都是奇数或都是偶数时,m-n是偶数,被2整除。
当m,n一奇一偶时,m+n+1是偶数,被2整除。
所以(m+n+1)(m-n)是2的倍数。
则4(m+n+1)(m-n)一定是8的倍数。
(注:0可以被2整除,所以0是一个偶数,0也可以被8整除,所以0是8的倍数。)
❾ 什么是倍数
倍数
①一个整数能够被另一整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。 ②一个数除以另一数所得的商。如a÷b=c,就是说a是b的c倍,a是b的倍数。 一个数能整除它的积,那么,这个数就是因数,它的积就是倍数。 3 × 5 = 15 ↑ ↑ ↑ 因数1 因数2 倍数 例如:A÷B=C,就可以说A是B的C倍。 ③一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集. 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
倍数的定义
对于整数n,除以m结果是无余数的整数,那么m就是n的约数。相对来说,称n为m的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。 一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
倍数的特征
2的倍数的特征
一个数的末尾是0 2 4 6 8,这个数就是2的倍数。 如3776。3776的末尾为6,是2的倍数。3776除以2=1888
3的倍数的特征
一个数的位数之和是3的倍数,这个数就是3的倍数。 4926。(4+9+2+6)除以3=7,是3的倍数。4926除以3=1642
4的倍数的特征
一个数的末两位是4的倍数,这个数就是4的倍数。 2356。56除以4=14,是4的倍数。2356除以4=589
5的倍数的特征
一个数的末尾是0 5,这个数就是5的倍数。 7775。7775的末尾为5,是5的倍数。7775除以5=15556的倍数的特征
6的倍数特征
一个数只要能同时被2和3整除,那么这个数就能被6整除。
7的倍数特征
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述“截尾、倍大、相减、验差”的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
8的倍数的特征
一个数的末三位是8的倍数,这个数就是8的倍数。 7256。256除以8=32,是8的倍数。7256除以8=907
9的倍数特征
若一个整数的数字和能被9整除,则这个整数能被9整除。
10的倍数特征
若一个整数的末位是0,则这个数能被10整除。
11的倍数特征
若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的“割尾法”处理!过程唯一不同的是:倍数不是2而是1!
12的倍数特征
若一个整数能被3和4整除,则这个数能被12整除。
13的倍数特征
若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述“截尾、倍大、相加、验差”的过程,直到能清楚判断为止。
17的倍数特征
若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述“截尾、倍大、相减、验差”的过程,直到能清楚判断为止。
19的倍数特征
若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。 若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述“截尾、倍大、相加、验差”的过程,直到能清楚判断为止。
23的倍数特征
若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除
合数的倍数特征
其实就是简单质数的乘积,只要掌握了一些质数的的倍数,一些合数的倍数也会掌握了。如上文提到的4、6、8、12。
❿ 什么叫倍数
一个整数能够被另一个整数整除,那么这个整数就是另一整数的倍数。
一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
(10)数学中什么是倍数扩展阅读:
一些数字倍数的特点:
(1)2的倍数
一个数的末尾是偶数(0,2,4,6,8),这个数就是2的倍数。
(2)3的倍数
一个数的各位数之和是3的倍数,这个数就是3的倍数。
(3)4的倍数
一个数的末两位是4的倍数,这个数就是4的倍数。
(4)5的倍数
一个数的末尾是0或5,这个数就是5的倍数。
相关概念:约数。
约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。示例:
在自然数(0和正整数)的范围内,任何正整数都是0的约数。
4的正约数有:1、2、4。
6的正约数有:1、2、3、6。
10的正约数有:1、2、5、10。
12的正约数有:1、2、3、4、6、12。
15的正约数有:1、3、5、15。
18的正约数有:1、2、3、6、9、18。
20的正约数有:1、2、4、5、10、20。