导航:首页 > 数字科学 > 哪些数学知识必要

哪些数学知识必要

发布时间:2022-09-19 08:10:34

㈠ 对物理学而言,哪些数学是重要的

不过首先要强调一件事:做物理的人,应该知道为什么我们要研究某个领域,历史是很重要的。温伯格的书一向先讲历史,再梳理物理;维尔切克在他的科普书中也强调关注物理发展的历史对学习物理的重要性。这是两个诺贝尔物理学奖第二梯度的人的切身经验。一个实例则是为什么要学习量子场论,这就是历史遗留问题了,负能量是一个出发点,相对论与量子力学的结合是一个出发点,二次量子化也是一个出发点,当知道量子场论发展历史之后,自然知道量子场论要讲什么,会解决什么问题。

数学,向来被看作是物理的语言工具,但是经过上个世纪的演变,逐渐成为物理的出发点,甚至导致很多物理学家被同行诟病说他们研究的不是物理,而是数学,这群人又被数学家讥讽说不严谨,语言混乱,只知其然不知其所以然。这群人就是研究大统一理论的人,不仅限于弦论。

现在大学生物理科班培养出来的学生很少有百年前物理学家的科学训练,从上大学第一天开始,他们首先要学的是数学,这很大程度导致学生认为数学对于物理来说是首要的(当然是首要的),很可惜,大家忘记物理学的出发点是解释自然现象,自然现象是复杂的,物理学只能抽象出来最简单的模型,比如理想气体模型,伊辛模型等等,描述模型的严格语言是数学,但是来龙去脉还是实验,这个与数学在物理中占同等的地位。

说这么多,只想说,要在物理中学数学。下面大约给出按照数学分类的物理学中的数学:

复变函数:在物理中,虚数用的比较多,傅立叶变幻中虚数的引入免除了很多三角函数化简的问题。但是实际上复变函数最漂亮的地方在于保角变换(共形变换)。物理中应用最广的就是着名的共形场论。

我想还是有必要说下。物理中最漂亮的处理方法之一就是对称性。对称性虽然没有直接解决物理问题,却给了物理学家简化物理理论或者模型的极佳的工具。人们通过研究对称性,分类了场与粒子,定义什么是规范场,发现了如何赋予规范场粒子质量,也就是希格斯机制,甚至单纯从对称性的定义创造了超对称的概念并解决了很多问题以及重新激发了物理学与数学的相互影响等等。而研究对称性的数学理论就是群论。

微分几何:注意,这里面提到的是“微分”几何,实际上在物理学角度看就是广义的微积分,通常大学中微积分是在欧几里德空间做的,没有区分局域与整体的概念。而微分流形上,我们首先要定义的就是局域的概念,我们只能做局域微积分,而不能对整个微分流形做微积分。因此在物理中,首先用到微分几何的自然是连系时空与几何的广义相对论。规范场论在某种程度上与广义相对论有类似的公式,起源在规范场论与纤维丛的关系。

辛几何:量子化中有很重要的概念是泊松括号,而这个概念在数学中与辛几何是密切相关的。我并不熟悉这里面的内容,所以书与综述也不能给出很好的推荐,只是要强调下,这是很严肃的数学物理方向,是数学家做的,很罕见有物理学出身的做这个东西。

㈡ 需要掌握哪些数学的知识

微积分、线性代数、概率论、复变函数、数值计算等等。

㈢ 数学常识有哪些呢

数学常识如下:

1、有“力学之父”美称的阿基米德流传于世的数学着作有10余种,阿基米德曾说过:给我一个支点,我可以翘起地球。这句话告诉我们:要有勇气去寻找这个支点,要用于寻找真理。

2、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。

4、“七巧板”是我国古代的一种拼板玩具,由七块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千,后来传到国外叫做唐图。

5、传说早在四千五百年前,我们的祖先就用刻漏来计时。

6、中国是最早使用四舍五入法进行计算的国家。

7、欧几里得最着名的着作《几何原本》是欧洲数学的基础,提出五大公设,发展为欧几里得几何,被广泛的认为是历史上最成功的教科书。

8、中国南北朝时代南朝数学家、天文学家、物理学家祖冲之把圆周率数值推算到了第7位数。

9、荷兰数学家卢道夫把圆周率推算到了第35位。

㈣ 在生活中要用到哪些数学知识和方法

如:1、风扇的扇叶绕着中心旋转:过一点有无数条直线。2、三角形的支架:三角形具有稳定性。3、四边形的推拉门:四边形具有不稳定性。4、速度、时间、路程三者的函数关系。5、用坐标表示地理位置。6、买彩票是否能中奖,概率问题。7、风筝飞翔平稳是轴对称图形的性质的应用。

㈤ 中学数学所需要学的知识点都有哪些

初中?高中?1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等
24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°

51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性质:
如果a:b=c:d,那么ad=bc
如果 ad=bc ,那么a:b=c:d
84、(2)合比性质:
如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b 86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例
90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3 三边对应成比例,两三角形相似(SSS)
95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2 相似三角形周长的比等于相似比
98、性质定理3 相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2 圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理 圆的切线垂直于经过切点的半径
124、推论1 经过圆心且垂直于切线的直线必经过切点
125、推论2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离 d>R+r
②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r)
⑤两圆内含 d<R-r(R>r)
136、定理 相交两圆的连心线垂直平分两圆的公共弦
137、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142、正三角形面积√3a/4 a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长= d-(R-r) 外公切线长= d-(R+r)
正弦定理 a/sinA=b/sinB=c/sinC=2R
注:其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB
注:角B是边a和边c的夹角

四、基本方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。
人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆。
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。

㈥ 学习数学最重要的是什么

初中数学宝典,你知道学习数学最重要的是什么吗?

在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!

复习知识点

以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.

㈦ 中考数学,那些知识比较重要

代数

初中代数是使学生在小学数学的基础上,把数的范围从非负有理数扩充到有理数、实数;通过用字母表示数,学习代数式、方程和不等式、函数等,学习一些常用的数据处理方法算表或计算器的使用方法;发展对于数量关系的认识和抽象概括的思维,提高运算能力。

初中代数的教学要求①是:

1.使学生了解有理数、实数的有关概念,熟练掌握有理数的运算法则,灵活运用运算律简化运算;会查平方表、立方表、平方根表、立方根表或用计算器代替算表。

2.使学生了解有关代数式、整式、分式和二次根式的概念,掌握它们的性质和运算法则,能够熟练地进行整式、分式和二次根式的运算以及多项式的因式分解。

3.使学生了解有关方程、方程组的概念;灵活运用一元一次方程、二元一次方程组和一元二次方程的解法解方程和方程组,掌握分式方程和简单的二元二次方程组的解法,理解一元二次方程的根的判别式。能够分析等量关系列出方程或方程组解应用题。

使学生了解一元一次不等式、一元一次不等式组的概念,会解一元一次不等式和一元一次不等式组,并把它们的解集在数轴上表示出来。

4.使学生理解平面直角坐标系的概念,了解函数的意义,理解正比例函数、反比例函数、一次函数的概念和性质,理解二次函数的概念,会根据性质画出正比例函数、一次函数的图象,会用描点法画出反比例函数、二次函数的图象。

5.使学生了解统计的思想,掌握一些常用的数据处理方法,能够用统计的初步知识解决一些简单的实际问题。

6.使学生掌握消元、降次、配方、换元等常用的数学方法,解决某些数学问题,理解“特殊——一般——特殊”、“未知——已知”、用字母表示数、数形结合和把复杂问题转化成简单问题等基本的思想方法。

7.使学生通过各种运算和对代数式、方程、不等式的变形以及重要公式的推导,通过用概念、法则、性质进行简单的推理,发展逻辑思维能力。

8.使学生了解已知与未知、特殊与一般、正与负、等与不等、常量与变量等辩证关系,以及反映在函数概念中的运动变化观点。了解反映在数与式的运算和求方程解的过程中的矛盾转化的观点。同时,利用有关的代数史料和社会主义建设成就,对学生进

行思想教育。

教学内容①和具体要求如下。

(一)有理数

l·有理数的概念

有理数。数轴。相反数。数的绝对值。有理数大小的比较。

具体要求:

(1)了解有理数的意义,会用正数与负数表示相反意义的量,以及按要求把给出的有理数归类。

(2)了解数轴、相反数、绝对值等概念和数轴的画法,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。

(3)掌握有理数大小比较的法则,会用不等号连接两个或两个以上不同的有理数。

2。有理数的运算

有理数的加法与减法。代数和。加法运算律。有理数的乘法与除法。倒数。乘法运算律。有理数的乘方。有理数的混合运算。

科学记数法。近似数与有效数字。平方表与立方表。

具体要求:

(1)理解有理数的加、减、乘、除、乘方的意义,熟练掌握有理数的运算法则、运算律、运算顺序以及有理数的混合运算,灵活运用运算律简化运算。

(2)了解倒数概念,会求有理数的倒数。

(3)掌握大于10的有理数的科学记数法。

(4)了解近似数与有效数字的概念,会根据指定的精确度或有效数字的个数,用四舍五人法求有理数的近似数;会查平方表与立方表。

(5)了解有理数的加法与减法、乘法与除法可以相互转化。

(二)整式的加减

代数式。代数式的值。整式。

单项式。多项式。合并同类项。

去括号与添括号。数与整式相乘。整式的加减法。

具体要求:

(1)掌握用字母表示有理数,了解用字母表示数是数学的一

大进步。

(2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的值。

(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式接某个字母降幂排列或升幂排列。

(4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及整式的加减运算。

(5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方法和特殊与一般的辩证关系。

(三)一元一次方程

等式。等式的基本性质。方程和方程的解。解方程。

一元一次方程及其解法。

一元一次方程的应用。

具体要求:

(1)了解等式和方程的有关概念,掌握等式的基本性质,会检验一个数是不是某个一元方程的解。

(2)了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会对方程的解进行检验。

(3)能够找出简单应用题中的未知量和已知量,分析各量之间的关系,并能够寻找等量关系列出一元一次方程解简单的应用题,会根据应用题的实际意义,检查求得的结果是否合理。

(4)通过解方程的教学,了解“未知”可以转化为“已知”的思想方法。

(四)二元一次方程组

二元一次方程及其解集。方程组和它的解。解方程组。

用代人(消元)法、加减(消元)法解二元一次方程组。三元一次方程组及其解法举例。

一次方程组的应用。

具体要求:

(1)了解二元一次方程的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,会检查一对数值是不是某个二元一次方程的一个解。

(2)了解方程组和它的解、解方程组等概念;会检验一对数值是不是某个二元一次方程组的一个解。

(3)灵活运用代人法、加减法解二元一次方程组,并会解简单的三元一次方程组。

(4)能够列出二元、三元一次方程组解简单的应用题。

(5)通过解方程组,了解把“三元”转化为“二元”,把“二元”转化为“一元”的消元的思想方法,从而初步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法。

(五)一元一次不等式和一元一次不等式组

I·一元一次不等式

不等式。不等式的基本性质。不等式的解集。一元一次不等式及其解法。

具体要求:

(l)了解不等式和一元一次不等式的概念,掌握不等式的基本性质,理解它们与等式基本性质的异同。

(2)了解不等式的解和解集概念,理解它们与方程的解的区别,会在数轴上表示不等式的解集。

(3)会用不等式的基本性质和移项法则解一元一次不等式。

2·一元一次不等式组

一元一次不等式组及其解法。

具体要求:

(1)了解一元一次不等式组及其解集的概念,理解一元一次不等式组与一元一次不等式的区别和联系。

(2)掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集。

(六)整式的乘除

l·整式的乘法

同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。乘法公式:

(a十b)(a一b)=a2-b2

(a±b)2=a2±2ab+b2

(a±b)(a2±ab+ b2)=a3±b3

具体要求:

(1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。

(2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算。

(3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。

(4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的认识规律。

2·整式的除法

同底数幂的除法。单项式除以单项式。多项式除以单项式。

具体要求:

(1)掌握同底数幂的除法运算性质,会用它熟练地进行运算。

(2)掌握单项式除以单项式、多项式除以单项式的法则,会用它们进行运算。

(3)会进行整式的加、减、乘、除、乘方的较简单的混合运算,灵活运用运算律与乘法公式使运算简便。

(七)因式分解

因式分解。提公因式法。运用(乘法)公式法。分组分解法。十字相乘法。多项式因式分解的一般步骤。

具体要求:

(1)了解因式分解的意义及其与整式乘法的区别和联系,了

解因式分解的一般步骤。

(2)掌握提公因式法(字母的指数是数字)、运用公式法(直接用公式不超过两次)、分组分解法(分组后能直接提公因式或运用公式的多项式,无需拆项或添项)和十字相乘法(二次项系数与常数项的积为绝对值不大于60的整系数二次三项式)这四种分解因式的基本方法,会用这些方法进行团式分解。

(八)分式

1.分式

分式。分式的基本性质。约分。最简分式。

分式的乘除法。分式的乘方。

同分母的分式加减法。通分。异分母的分式加减法。

具体要求:

(l)了解分式、有理式、最简分式、最简公分母的概念,掌握分式的基本性质,会熟练地进行约分和通分。

(2)掌握分式的加、减与乘、除、乘方的运算法则,会进行简单的分式运算。

2.零指数与负整数指数

零指数。负整数指数。整数指数幂的运算。

具体要求:

(l)了解零指数和负整数指数幂的意义;了解正整数指数幂的运算性质可以推广到整数指数幂,掌握整数指数幂的运算。

(2)会用科学记数法表示数。

(九)可他为一元一次方程的公式方程

含有字母系数的一元一次方程。公式变形。

分式方程。增根。可化为一元一次方程的分式方程的解法与

应用。

具体要求:

(1)掌握含有字母系数的一元一次方程的解法和简单的公式变形。

(2)了解分式方程的概念,掌握用两边同乘最简公分母的方法解可化为一元一次方程的分式方程(方程中的分式不超过三个);了解增根的概念,会检验一个数是不是分式方程的增根。

(3)能够列出可化为一元一次方程的分式方程解简单的应用题。

(十)数的开方

1.平方根与立方根

平方根。算术平方根。平方根表。

立方根。立方根表。

具体要求:

(1)了解平方根、算术平方根、立方根的概念,以及用根号表示数的平方根、算术平方根和立方根。

(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根和算术平方根,用立方运算求某些数的立方根。

(3)会查表求平方根和立方根(有条件的学校可使用计算器)。

2.实数

无理数。实数。

具体要求:

( 1)了解无理数与实数的概念,会把给出的实数按要求进行归类;了解实数的相反数、绝对值的意义,以及实数与数轴上的点—一对应。

(2)了解有理数的运算律在实数运算中同样适用;会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算。

(3)结合我国古代数学家对。的研究,激励学生科学探求的精神和爱国主义的精神。

(十一)二次根式

二次根式。积与商的方根的运算性质。

二次根式的性质。

最简二次根式。同类二次根式。二次根式的加减。二次根式的乘法。二次根式的除法。分母有理化。

具体要求:

(1)了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。

(2)掌握积与商的方根的运算性质

会根据这两个性质熟练地化简二次根式(如无特别说明,根号内所有的字母都表示正数,并且不需要讨论).

(3)掌握二次根式(不含双重根号)的加、减、乘、除的运算法则,会用它们进行运算。

(4)会将分母中含有一个或两个二次根式的式于进行分母有理化。

*(5)掌握二次根式的性质

会利用它化简二次根式

(十二)一元二次方程

1.一元二次方程

一元二次方程。一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法。

一元二次方程的根的判别式。

*①一元二次方程根与系数的关系。

二次三项式的因式分解(公式法)。

一元二次方程的应用。

具体要求:

(1)了解一元二次方程的概念,会用直接开平方法解形如

(x-a)2=b(b≥0)的方程,用配方法解数字系数的一元二次方程;掌握一元二次方程求根公式的推导,会用求根公式解一元二次方程;会用因式分解法解一元二次方程。灵活运用一元二次方程的四种解法求方程的根。

(2)理解一元二次方程的根的判别式,会根据根的判别式判断数字系数的一元二次方程的根的情况。

*(3)掌握一元二次方程根与系数的关系式,会用它们由已知一元二次方程的一个根求出另一个根与未知系数,会求一元二次方程两个根的倒数和与平方和。

(4)了解二次三项式的因式分解与解方程的关系,会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式。

(5)能够列出一元二次方程解应用题。

(6)结合教学内容进一步培养学生的思维能力,对学生进行辩证唯物主义观点的教育。

2.可化为一元二次方程的方程

可化为一元二次方程的分式方程。

* 可化为一元一次、一元二次方程的无理方程。

具体要求:

(1)掌握可化为一元二次方程的分式方程(方程中的分式不超过三个)的解法,会用去分母或换元法求分式方程的解,并会验根。

(2)能够列出可化为一元二次方程的分式方程解应用题。

*(3)了解无理方程的概念,掌握可化为一元一次、一元一二次方程的无理方程(方程中含有未知数的二次根式不超过两个)的解法,会用两边平方或换元法求无理方程的解,并会验根。

(4)通过可化为一元二次方程的分式方程、无理方程的教学,使学生进一步获得对事物可以转化的认识。

3.简单的二元二次方程组

二元二次方程。二元二次方程组。

由一个二元一次方程和一个二元二次方程组成的方程组的解法。

* 由一个二元二次方程和一个可以分解为两个二元一次方程

的方程组成的方程组的解法。

具体要求:

(l)了解二元二次方程、二元二次方程组的概念,掌握由一个二元一次方程和一个二元二次方程组成的方程组的解法,会用代人法求方程组的解。

*(2)掌握由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的解法。

(3)通过解简单的二元二次方程组,使学生进一步理解“.消元”、“降次”的数学方法,获得对事物可以转化的进一步认识。

(十三)函数及其图象

1·函数

平面直角坐标系。常量。变量。函数及其表示法。

具体要求:

(l)理解平面直角坐标系的有关概念,并会正确地画出直角坐标系;理解平面内点的坐标的意义,会根据坐标确定点和由点求得坐标。了解平面内的点与有序实数对之间—一对应。

(2)了解常量、变量、函数的意义,会举出函数的实例,以及分辨常量与变量、自变量与函数。

(3)理解自变量的取值范围和函数值的意义,对解析式为只含有一个自变量的简单的整式、分式、二次根式的函数,会确定它们的自变量的取值范围和求它们的函数值。

(4)了解函数的三种表示法,会用描点法画出函数的图象。

(5)通过函数的教学,使学生体会事物是互相联系和有规律地变化着的,并向学生渗透数形结合的思想方法。

2·正比例函数和反比例函数

正比例函数及其图象。反比例函数及其图象。

具体要求:

(1)理解正比例函数、反比例函数的概念,能够根据问题中的条件确定正比例函数和反比例函数的解析式。

(2)理解正比例函数、反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减小而变化的情况。

(3)理解待定系数法。会用待定系数法求正、反比例函数的解析式。

3.一次函数的图象和性质

一次函数。一次函数的图象和性质。

△①二元一次方程组的图象解法。

具体要求:

(1)理解一次函数的概念,能够根据实际问题中的条件,确

定一次函数的解析式。

(2)理解一次函数的性质,会画出它的图象。

△(3)会用图象法求二元一次方程组的近似解。

(4)会用待定系数法求一次函数的解析式。

4·二次函数的图象

二次函数。抛物线的顶点、对称轴和开口方向。

西一元二次方程的图象解法。

具体要求:

(l)理解二次函数和抛物线的有关概念,会用描点法画出二

次函数的图象,会用公式(。配方法)确定抛物线的顶点和对称

轴。

△(2)会用图象法求一元二次方程的近似解。

*(3)会用待定系数法由已知图象上三个点的坐标求二次函

数的解析式。

(十四)统计初步

总体和样本。众数。中位数。平均数。方差与标准差。方差的简化计算。频率分布。

实习作业。

具体要求:

(1)了解总体、个体、样本、样本容量等概念,能够指出研究对象的总体、个体和样本。

(2)理解众数、中位数的意义,掌握它们的求法。

(3)理解平均数的意义,了解总体平均数和样本平均数的意义,掌握平均数的计算公式;理解加权平均数的概念,掌握它的计算公式;会用样本平均数估计总体平均数。

(4)了解样本方差、总体方差、样本标准差的意义,会计算(可使用计算器)样本方差和样本标准差,会根据同类问题的两组样本数据的方差或样本标准差比较这两组样本数据的波动情况。

(5)理解频数、频率的概念,了解频率分布的意义和作用,掌握整理数据的步骤和方法,会对数据进行合理的分组,列出样本频率分布表,画出频率分布直方图。

△(6)会用科学计算器求样本平均数与标准差。

(7)通过实习作业,使学生初步掌握搜集、整理和分析数据的方法,培养解决实际问题的能力。

(8)通过统计初步的教学,使学生了解用样本估计总体的数理统计的基本思想,并培养学生用数学的意识,踏实细致的作风和实事求是的科学态度。

初中几何是在小学数学中几何初步知识的基础上,使学生进

一步学习基本的平面几何图形知识,向他们直观地介绍一些空间

几何图形知识。初中几何将逻辑性与直观性相结合,通过各种图

形的概念、性质、作(画)图及运算等方面的教学,发展学生的

逻辑思维能力、空间观念和运算能力,并使他们初步获得研究几

何图形的基本方法。

几 何

初中几何的教学要求是:

1.使学生理解有关相交线、平行线、三角形、四边形、圆,以及全等三角形、相似三角形的概念和性质,掌握用这些概念和性质对简单图形进行论证和计算的方法。了解关于轴对称、中心对称的概念和性质。理解锐角三角函数的意义,会用锐角三角函数和勾股定理解直角三角形。

2.使学生会用直尺、圆规、刻度尺、三角尺、量角器等工具作和画几何图形。

3.使学生通过具体模型,了解空间的直线、平面的平行与垂直关系,并会用展开图和面积公式计算圆柱和圆锥的侧面积和全面积。

4·逐步培养学生观察、比较、分析、综合、抽象、概括的能力,逐步使学生掌握简单的推理方法,从而提高学生的逻辑思维能力。

5.通过辨认图形、画图和论证的教学,进一步培养学生的空间观念。

6.通过揭示几何知识来源于实践又应用于实践的关系,以及几何概念、性质之间的联系和图形的运动、变化,对学生进行辩证唯物主义的教育。利用有关的几何史料和社会主义建设成就,对学生进行思想教育。通过论证与画图的教学,逐步培养学生严谨的科学态度,并使他们获得美的感受。

教学内容和具体要求如下:

(一)线段、角

1·几何图形

几何体。几何图形。点。直线。平面。

具体要求:

(1)通过具体模型(如长方体)了解从物体外形抽象出来的几何体、平面、直线和点等。

(2)了解几何图形的有关概念。了解几何的研究对象。

(3)通过几何史料的介绍,对学生进行几何知识来源于实践的教育和爱国主义教育,使学生了解学习几何的必要性,从而激发他们学习几何的热情。

2.线段

两点确定一条直线。相交线。

线段。射线。线段大小的比较。线段的和与差。线段的中点。

具体要求:

(1)掌握两点确定一条直线的性质。了解两条相交直线确定一个交点。

(2)了解直线、线段和射线等概念的区别。

(3)理解线段的和与差及线段的中点等概念,会比较线段的大小。

(4)理解两点间的距离的概念,会度量两点间的距离。

3.角

角。角的度量。角的平分线。 小于平角的角的分类。

具体要求:

(1)理解角的概念。掌握角的平分线的概念,会比较角的大小。会用量角器画一个角等于已知角。

(2)掌握度、分、秒的换算。会计算角度的和、差、倍、分。

(3)理解周角、平角、直角、锐角、钝角的概念,并会进行有关的计算。

(4)掌握角的平分线的概念。会画角的平分线。

(5)掌握几何图形的符号表示法。会根据几何语句准确、整洁地画出相应的图形,会用几何语句描述简单的几何图形。

(二)相交、平行

l·相交线

对顶角。邻角、补角。

垂线。点到直线的距离。

同位角。内错角。同旁内角。

具体要求:

(1)理解对顶角的概念。理解对顶角的性质和它的推证过程,会用它进行推理和计算。

(2)理解补角、邻补角的概念,理解同角或等角的补角相等的性质和它的推证过程,会用它进行推理和计算。

(3)掌握垂线、垂线段等概念;会用三角尺或量角器过一点画一条直线的垂线。了解斜线、斜线段等概念,了解垂线段最短的性质。

(4)掌握点到直线的距离的概念,并会度量点到直线的距离。

(5)会识别同位角、内错角和同旁内角。

2.平行线 平行线。

平行线的性质及判定。

具体要求:

(1)了解平行线的概念及平行线的基本性质。会用平行的传递性进行推理。

(2)会用一直线截两平行直线所得的同位角相等、内错角相等、同旁内角互补等性质进行推理和计算;会用同位角相等,或内错角相等,或同旁内角互补判定两条直线平行。

(3)会用三角尺和直尺过已知直线外一点画这条直线的平行线。

(4)理解学过的描述图形形状和位置关系的语句,并会用这些语句描述简单的图形和根据语句画图。

3.空间直线、平面的位置关系

直线与直线,直线与平面,平面与平面的位置关系。

具体要求:

通过长方体的棱、对角线和各面之间的位置关系,了解直线与直线的平行、相交、异面的关系,以及直线与平面、平面与平面的平行、垂直关系。

4.命题、定义、公理、定理

命题。定义。公理。定理。

定理的证明。

具体要求:

(1)了解命题的概念,会区分命题的条件(题设)和结论(题断),会把命题改写成“如果…’··,那么”’…”的形式。

(2)了解定义、公理、定理的概念。

(3)了解证明的必要性和推理过程中要步步有据,了解综合法证明的格式。 (三)三角形

1.三角形

三角形。三角形的角平分线、中线、高。三角形三边间的不等关系。三角形的内角和。三角形的分类。

具体要求:

(1)理解三角形,三角形的顶点、边、内角、外角、角平分线、中线和高等概念,会画出任意三角形的角平分线、中线和高。

(2)理解三角形的任意两边之和大于第三边的性质。会根据三条线段的长度判断它们能否构成三角形。

(3)掌握三角形的内角和定理,三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角的性质。

(4)会按角的大小和边长的关系对三角形进行分类。

2.全等三角形

全等形。全等三角形及其性质。三角形全等的判定。

具体要求:

(1)了解全等形、全等三角形的概念和性质,能够辨认全等

形中的对应元素。

(2)能够灵活运用“边、角、边”,“角、边、角”,“角、角、边”,“边、边、边”等来判定三角形全等;会证明“角、角、边”定理。了解三角形的稳定性。

(3)会用三角形全等的判定定理来证明简单的有关问题,并会进行有关的计算。

㈧ 学数学要背知识点吗 要背什么

数学这个科目,不管是对于文科学生还是对于理科学生。都是比较重要的,因为他是三大主课之一,它占的分值比较大。要是数学学不好,你可能会影响到物理化学的学习,因为那些学科都是要通过计算。所以知识点也是需要背的,下面我为大家总结了数学的知识点,一起看看吧。

高中数学要背哪些知识点

等差数列

1、等差数列的通项公式为:an=a1+(n-1)d(1)

2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项.,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.

3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)*项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1

等比数列

1、等比数列的通项公式是:An=A1*q^(n-1)

2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)

3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N*,则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.

在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:

①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;

②在等比数列中,依次每 k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.

如何学会好数学

1、养成良好的学习数学习惯。

建立良好的学习数学习惯,会使自己学习感到有序而轻松。

2、及时了解、掌握常用的数学思想和方法 。

学好高中数学,需要我们从数学思想与方法高度来掌握它。

数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。

3、逐步形成 “以我为主”的学习模式 。

数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。

㈨ 高中数学都有哪些知识点需要重视的

高中数学重点知识与结论分类解析
一、集合与简易逻辑
1.集合的元素具有确定性、无序性和互异性.
2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.
3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为
4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.
5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.
7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.
注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” .
8.充要条件
二、函数
1.指数式、对数式, , ,

, , , , , , .
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.
(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.
3.单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.
注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .
(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.
(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.
(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).
(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.
复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)
4.对称性与周期性(以下结论要消化吸收,不可强记)
(1)函数 与函数 的图像关于直线 ( 轴)对称.
推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.
推广二:函数 , 的图像关于直线 (由 确定)对称.
(2)函数 与函数 的图像关于直线 ( 轴)对称.
(3)函数 与函数 的图像关于坐标原点中心对称.
推广:曲线 关于直线 的对称曲线是 ;
曲线 关于直线 的对称曲线是 .
(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .
如果 是R上的周期函数,且一个周期为 ,那么 .
特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .
三、数列
1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).
注意: ; .
2.等差数列 中:
(1)等差数列公差的取值与等差数列的单调性.
(2) ; .
(3) 、 也成等差数列.
(4)两等差数列对应项和(差)组成的新数列仍成等差数列.
(5) 仍成等差数列.
(6) , , , , .
(7) ; ; .
(8)“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;
“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;
(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.
(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.
(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).
3.等比数列 中:
(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.
(2) ; .
(3) 、 、 成等比数列; 成等比数列 成等比数列.
(4)两等比数列对应项积(商)组成的新数列仍成等比数列.
(5) 成等比数列.
(6) .
特别: .
(7) .
(8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;
(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.
(10)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.
(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).
4.等差数列与等比数列的联系
(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.
(2)如果数列 成等比数列,那么数列 必成等差数列.
(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.
(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.
如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.
注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.
5.数列求和的常用方法:
(1)公式法:①等差数列求和公式(三种形式),
②等比数列求和公式(三种形式),
③ , , , .
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.
(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法).
(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:
① ,
② ,
特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.
(6)通项转换法。
四、三角函数
1. 终边与 终边相同( 的终边在 终边所在射线上) .
终边与 终边共线( 的终边在 终边所在直线上) .
终边与 终边关于 轴对称 .
终边与 终边关于 轴对称 .
终边与 终边关于原点对称 .
一般地: 终边与 终边关于角 的终边对称 .
与 的终边关系由“两等分各象限、一二三四”确定.
2.弧长公式: ,扇形面积公式: ,1弧度(1rad) .
3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.
注意: ,
, .
4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .
5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;
6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.
7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!
角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.
如 , , , , 等.
常值变换主要指“1”的变换:
等.
三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.
注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹— ’的联系”(常和三角换元法联系在一起 ).
辅助角公式中辅助角的确定: (其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .
8.三角函数性质、图像及其变换:
(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性
注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?
(2)三角函数图像及其几何性质:
(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.
(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.
9.三角形中的三角函数:
(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.
(2)正弦定理: (R为三角形外接圆的半径).
注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.
(3)余弦定理: 等,常选用余弦定理鉴定三角形的类型.
(4)面积公式: .
五、向 量
1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.
2.几个概念:零向量、单位向量(与 共线的单位向量是 ,特别: )、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).
3.两非零向量平行(共线)的充要条件

两个非零向量垂直的充要条件

特别:零向量和任何向量共线. 是向量平行的充分不必要条件!
4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+ e2.
5.三点 共线 共线;
向量 中三终点 共线 存在实数 使得: 且 .
6.向量的数量积: , ,


注意: 为锐角 且 不同向;
为直角 且 ;
为钝角 且 不反向;
是 为钝角的必要非充分条件.
向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).
7.
注意: 同向或有 ;
反向或有 ;
不共线 .(这些和实数集中类似)
8.中点坐标公式 , 为 的中点.
中, 过 边中点; ;
. 为 的重心;
特别 为 的重心.
为 的垂心;
所在直线过 的内心(是 的角平分线所在直线);
的内心.

六、不等式
1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.
(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);
(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);
(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.
2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
3.常用不等式有: (根据目标不等式左右的运算结构选用)
a、b、c R, (当且仅当 时,取等号)
4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法
5.含绝对值不等式的性质:
同号或有 ;
异号或有 .
注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转化为最值问题).
6.不等式的恒成立,能成立,恰成立等问题
(1).恒成立问题
若不等式 在区间 上恒成立,则等价于在区间 上
若不等式 在区间 上恒成立,则等价于在区间 上
(2).能成立问题
若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上
若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上的 .
(3).恰成立问题
若不等式 在区间 上恰成立, 则等价于不等式 的解集为 .
若不等式 在区间 上恰成立, 则等价于不等式 的解集为 ,
七、直线和圆
1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?
2.知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .
注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)
与直线 平行的直线可表示为 ;
与直线 垂直的直线可表示为 ;
过点 与直线 平行的直线可表示为:

过点 与直线 垂直的直线可表示为:

(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.
(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.
3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .
注:点到直线的距离公式

特别: ;


4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.
5.圆的方程:最简方程 ;标准方程 ;
一般式方程 ;
参数方程 为参数);
直径式方程 .
注意:
(1)在圆的一般式方程中,圆心坐标和半径分别是 .
(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有:
, ,


6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”
(1)过圆 上一点 圆的切线方程是: ,
过圆 上一点 圆的切线方程是: ,
过圆 上一点 圆的切线方程是: .
如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.
如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).
7.曲线 与 的交点坐标 方程组 的解;
过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.
八、圆锥曲线
1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.
(1)注意:①圆锥曲线第一定义与配方法的综合运用;
②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.③圆锥曲线的焦半径公式如下图:

2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .
重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.
注意:等轴双曲线的意义和性质.
3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:
①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.
②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.
③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式
( , , )或“小小直角三角形”.
④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.
4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.
②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.
③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.
九、直线、平面、简单多面体
1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算
2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理, ),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.
3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.
特别声明:
①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.
②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决.
③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题.
4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.
如长方体中:对角线长 ,棱长总和为 ,全(表)面积为 ,(结合 可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式), ;
如三棱锥中:侧棱长相等(侧棱与底面所成角相等) 顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直) 顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内 顶点在底上射影为底面内心.
如正四面体和正方体中:

5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体 分割:三棱柱中三棱锥、四三棱锥、三棱柱的体积关系是 .
6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.
正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种, 即正四面体、正六面体、正八面体、正十二面体、正二十面体.

9.球体积公式 ,球表面积公式 ,是两个关于球的几何度量公式.它们都是球半径及的函数.
十、导 数
1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .
2.多项式函数的导数与函数的单调性:
在一个区间上 (个别点取等号) 在此区间上为增函数.
在一个区间上 (个别点取等号) 在此区间上为减函数.
3.导数与极值、导数与最值:
(1)函数 在 处有 且“左正右负” 在 处取极大值;
函数 在 处有 且“左负右正” 在 处取极小值.
注意:①在 处有 是函数 在 处取极值的必要非充分条件.
②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.
③单调性与最值(极值)的研究要注意列表!
(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;
函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;
注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小值.
4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处”还是“过”,对“二次抛物线”过抛物线上一点的切线 抛物线上该点处的切线,但对“三次曲线”过其上一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点.
5.注意应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题.

阅读全文

与哪些数学知识必要相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:743
乙酸乙酯化学式怎么算 浏览:1408
沈阳初中的数学是什么版本的 浏览:1355
华为手机家人共享如何查看地理位置 浏览:1047
一氧化碳还原氧化铝化学方程式怎么配平 浏览:889
数学c什么意思是什么意思是什么 浏览:1413
中考初中地理如何补 浏览:1305
360浏览器历史在哪里下载迅雷下载 浏览:705
数学奥数卡怎么办 浏览:1393
如何回答地理是什么 浏览:1028
win7如何删除电脑文件浏览历史 浏览:1060
大学物理实验干什么用的到 浏览:1489
二年级上册数学框框怎么填 浏览:1704
西安瑞禧生物科技有限公司怎么样 浏览:986
武大的分析化学怎么样 浏览:1252
ige电化学发光偏高怎么办 浏览:1341
学而思初中英语和语文怎么样 浏览:1656
下列哪个水飞蓟素化学结构 浏览:1427
化学理学哪些专业好 浏览:1490
数学中的棱的意思是什么 浏览:1062