导航:首页 > 数字科学 > 如何提升数学思维品质

如何提升数学思维品质

发布时间:2022-09-19 21:29:15

Ⅰ 如何培养良好的数学思维品质

如何培养良好的数学思维品质:

一、沟通知识,引导联系,培养思维的广阔性。

思维广阔的人能运用已有知识,把思维引向更广、更宽的未知领域,从而发现新事物,提出新见解。古希腊着名的学者亚里士多德思维非常广阔,他在哲学、心理学、历史学、物理学等十几个领域都有很深的造诣。
在小学数学教学中引导学生及时沟通新旧知识,对新旧知识的联结点进行横向和纵向的比较,使学生抓住新旧知识的内在联系,以旧知为抓手,把新知纳入旧知体系中,从而形成新的知识结构。这样能培养学生思维的广阔性。
比如,在教学苏教版数学第11册《比的意义》时,引导学生联系已学过的分数、除法,通过设计如下表格(略)让学生填写,来比较出比、分数、除法之间的联系与区别。
这样及时沟通新旧知识,找出新旧知识的内在联系,使学生掌握了系统完整的知识,形成了良好的知识结构。
二、辨析概念,引导比较,培养思维的深刻性。
思维深刻的人善于深刻地思考问题,抓住事物的本质规律,预见事物的发展进程。
在小学数学教学中,我们可以引导学生对容易混淆的概念、解题方法等进行辨析,比较它们的异同,这样可以培养学生思维的深刻性。
比如苏教版第10册《数的整除》一章中,学生对质因数、因数、质数三个概念常常混淆不清,我们可以设计一组判断题让学生进行判断。(1)6 和1 是6的质因数。(2)6的质因数是2和3。又如,在进行口算练习时,学生经常对形如“0.1×0.01÷0.01×0.1”和“0.1×0.01÷0.01÷0.1”两题搞不清楚。我们可以先让学生比较这两题有什么相同和不同的地方,等学生搞清这两题符号不同后,再让学生口算这两题。还可以设计一组这样的题目让学生练习。
三、精心提问,引导多思,培养思维的独立性。
一个具有独创精神的人,往往不会墨守成规,拘泥于已有结论,而总善于独立思考、深探细究。意大利着名的天文学家伽利略敢于怀疑,不受亚里士多德已有结论的束缚,通过大胆的设想和实践,在比萨斜塔上向世人宣告:“两个铁球同时着地”。
在数学教学中,教师上课不在于问题提的多少,而在于问题提得是否巧妙。巧妙的提问可以启发学生积极、独立地思考,可以培养思维的独立性。
苏教版第10册上有这样一个题目:一个物体从高空下落,经4秒落地。已知第一秒下落距离是4.9米,以后每秒都比前一秒多9.8米。这个物体下落前距离地面多少米?绝大部分学生这样算:
4.9+(4.9+9.8)+(4.9+9.8+9.8)+(4.9+9.8+9.8+9.8)。我提示学生能否用简便一点的方法,学生们积极思考,很快有学生说:“在整个下落过程中共有4个4.9米,6个9.8米,因此可这样算:4.9×4+9.8×6”。紧接着我提了这样一个问题“谁能根据9.8和4.9的关系,用更简便的方法呢?”学生们情绪高涨,个个积极思考,不到一分钟,有学生找到了答案:“9.8是4.9的2倍,因此在整个下落过程中共有16个4.9,即4.9×16”
通过两个提问,培养了学生独立思考问题的习惯,激发了学生的求知欲望,活跃了课堂气氛。
四、巧设练习,引导变通,培养思维的灵活性。
教学实践告诉我们:学习成绩差的学生大多思路闭塞,受旧方法束缚,只会从单一角度思考问题,而思维活跃的人往往能从新的角度、利用新的观点去考虑问题,能摆脱早已过时的处理问题的方法的束缚,多方探寻,寻求多种解决问题的方法。
在小学数学教学中,我们可以通过巧妙编制习题,引导学生求异变通,来培养学生思维的灵活性。
比如,苏教版第11册第93页上有这样一个题目:新育苗圃柏树苗的占地面积是松树苗的3/4,两种树苗共占地5.25公顷。两种树苗各占地多少公顷?练习时,我们要求学生沟通按比例分配、和(差)倍问题,根据“柏树苗的占地面积是松树苗的3/4”,求异变通,用多种方法解答。通过讨论,学生想出了如下几种解法:
1.分数法:松树:5.25÷(1+3/4)=3公顷,柏树:5.25-3=2.25公顷。
2.按比例分配法:把“柏树苗的占地面积是松树苗的3/4”转化成“柏树苗占地面积与松树苗占地面积的比是3:4”。
松树:5.25×4/7=3公顷,柏树:5.25×3/7=2.25公顷。
3.份数法(归一法):松树:5.25÷(3+4)×4=3公顷,柏树:5.25÷(3+4)×3=2.25公顷。
4.方程解:设松树χ棵,柏树3/4χ棵。
χ+3/4χ=5.25
7/4χ=5.25
χ=3
5.25-3=2.25公顷
这样做,能拓宽学生的解题思路,活跃思维,沟通所学知识的内在联系。
此外,我们还可通过设计“填充未知数”、“补条件”、“补问题”、“改题变式训练”等类型的题目,来培养学生思维的灵活性。

Ⅱ 如何快速提高数学思维

如何快速提高数学思维?只有真正提高学生课堂参与度,切实关注学生的个体差异,落实训练培养学生的数学思维品质,实战指导提高学生解题能力,逐步提高他们的数学思维能力,才能更好地提高 教育 质量。下面是我为大家整理的关于如何快速提高数学思维,希望对您有所帮助。欢迎大家阅读参考学习!

1如何快速提高数学思维

在课堂教学中创设问题情境

在教学中,我经常采用的办法就是描述一个 童话 故事 或贴近 儿童 生活的事件,将要解决的问题就包含在这个故事或事件之中,实际上就是为学生设置了解决身边数学问题的情境,密切了数学与生活的关系。

例如,我在教学《通分》时,创设了一个“慢羊羊分纸”的童话故事情境:喜羊羊要一张纸的1/2,美羊羊要一张纸的2/4,懒羊羊要一张纸的4/8,他们分到的都相等吗?学生通过思考,认识到了通分,并学会了通分的 方法 。在教学“9加几”时,创设了运动会上给运动员送饮料的情境……像这样的例子还有很多。如在教学“众数”这一内容时,我先让学生分组调查本班学生所穿鞋子的号码,去鞋店里调查哪个鞋号的鞋子卖得最快,学生带着这些实际调查的结果再去学习众数,就非常容易。

利用直觉启发学生猜想思维

数学直觉是对于数学对象的某种迅速地、直接的洞察或者顿悟,数学直觉有助于学生发现问题和解决问题。由于长期直觉思维得不到重视,学生在学习的过程中认为数学是枯燥乏味的,对数学的学习缺乏取得成功的必要的信心,从而丧失数学学习的兴趣。成功可以培养一个人的自信,直觉发现伴随着很强的“自信心”。从马斯洛的需要层次来看,它使学生的自我价值得以充分实现,也就是最高层次的需要得以实现,比起 其它 的物资奖励和情感激励,这种自信更稳定、更持久。

布鲁纳认为学习的最好刺激是对教学材料的兴趣。当一个问题不用通过逻辑证明的形式而是通过自己的直觉获得,那么成功带给他的震撼是巨大的,内心将会产生一种强大的学习钻研动力。高斯在小学时就能解决问题“1+2+…… +99+100=?”,这是基于他对数的敏感性的超常把握,这对他一生的成功产生了不可磨灭的影响。

2数学 思维训练

从进行积极的说理训练入手

小学数学中有些知识容易混淆,对于这部分知识,我发现用说理训练的办法效果就很好,尤其是口头说理训练不仅能避免错误,而且有助于学生思维的发展。因为在说话当中,大脑在不停地运转,那么大脑运转的过程同时就是思维的过程。记得在学习“小数和复名数”时,对于“小数与复名数相互改写”的内容学生经常出错,为了减少错误,我在课堂教学中采取了说理训练的方法。讲授完相关内容后,我进行了一定的启发,鼓励学生自己 总结 出小数与复名数相互改写的方法,然后让学生根据改写方法说出自己是如何做出的详细步骤。经过这样的口头说理训练,学生学得有条有理,这节课取得了事半功倍的效果。

教学生学会画知识树状图

所谓知识树状图就是让学生由一个知识点可以联想到和它有关的所有知识。托尼?布赞在他的新着《脑图之书――发散性思维》中说,大脑是将信息存储成树状的,它以分类和关联存储信息。因而,你越能用大脑自身的 记忆方法 工作,你就会学得越容易、越迅速。拿三角形来说,学生就可以想到若按角分,可分为锐角三角形、钝角三角形、直角三角形,由直角三角形可联想到它的判定和性质、三角函数等;若按边分,可分为一般三角形、等腰三角形和等边三角形,由等腰三角形和等边三角形可联想到它的判定和性质。

打破常规,弱化思维定势

有一道智力测验题:用什么方法能使冰最快地变成水?一般人往往回答要用加热、太阳晒的方法,答案却是“去掉两点水”。这就超出人们的想象了。而思维定势能使学生在处理熟悉的问题时驾轻就熟,得心应手,并使问题圆满解决。所以用来应付现在的考试相当有效。但在需要开拓创新时,思维定势就会变成“思维枷锁”,阻碍新思维、新方法的构建,也阻碍新知识的吸收。因此,思维定势与创新教育是互相矛盾的。“创”与“造”两方面是有机结合起来的,“创”就是打破常规,“造”就是在此基础上生产出有价值、有意义的东西来。因此,首先要鼓励学生的“创”。

3数学思维训练

激发学生的学习兴趣

兴趣是人的一种心理动力。有了兴趣,学生就可以有学习的欲望,能够调动其学习的积极性和主动性,使其主动思维,从而促进思维能力的发展和提高。教师如何才能激发学生思维动机呢?这就需要教师在教学中要深入挖掘教材内容,根据学生的认知规律和 经验 阅历,采用各种教学手段,使学生明确知识的价值。

例如,在教学根据实际情况用“进一法”和“去尾法” 取商的近似数的应用题时,我先出示题目:果农们要将680千克的葡萄装进纸箱运走,每个纸箱最多可以盛15千克,需要几个纸箱呢?然后我再让学生读题,分析解题思路。当学生回答出求需要准备几个纸箱,就是看680千克里有几个15千克时,我先让学生猜一猜需要几个纸箱,然后让学生独立计算出结果。算出结果为45.3。我问学生:“按四舍无入法我们准备45个箱子可以吗?”学生回答说:“不可以。”我又问:“为什么?”学生都知道需要再准备一个箱子装剩下的葡萄,所以需要准备46个瓶子才行。最后让学生验证自己的猜想,我再告诉学生:这种根据实际情况取近似数,小数点后不管够不够5都要进上去的方法叫“进一法”。接着用同样的方法教学了“去尾法”。由于这些例题都是生活中遇到的问题,学生很容易理解掌握。这样也引发了学生探求新知的思维动机。

提升解题能力

我们学校大部分学生来自于农村家庭,乡镇中学在教学上和管理上还是存在一定的缺陷,需要很多完善的地方.学生的基础相对比较差,当进入高中学习之后,在注重加强其基础知识的学习同时,还应该注重其技巧方面的能力培养. 数学是一门逻辑性和连贯性特别强的学科,它不仅要求学生们具有活跃的思维能力,还要具有一定的推理和演绎、归纳能力,这对刚刚踏入高中的中学生来说是一个极大的挑战,然而对于这部分学生来说,由于本身的底子比较薄,基础不牢固,再加上来至于生活、家庭等各方面的压力,使他们心理负担较重,承受能力较差,一次的失败使他们心灰意冷,失去了继续奋斗的激情和信心,时间长了就形成了恶性循环,面对学习和生活的不如意就很容易养成一些不良习惯,如果把这些习惯和厌学的情绪带到学习中去,那势必会影响正常的生活和学习. 因此,在日常生活中,应该对学生加强思想道德管理,做好思想教育工作,对出色的学生要鼓励和支持,对差的学生公平对待,热心帮助,要有足够的耐心.

习惯决定一切,要注重培养学生们的良好习惯,摒弃一些不良恶习,平时多开展相关方面的活动,让学生之间知道无论是学习上还是生活上相互帮助都是一种美德,养成学习上互帮互助、生活上艰苦朴素的好习惯,不断地提高自己的自主学习能力,教学一词中教的目的就是为了学,因而教师应该摆脱单一的教学方式,不能只注重书本或者教学大纲规定的知识的讲解,在保证大部分学生都能听懂的情况下,适当地拓宽知识面,加大问题的难度,不限制用什么方法,让学生们能够独立地去完成问题的解答,采用的方式可以是小组讨论或者研究的方法,并且师生可以合作,这样在一定程度上可以让学生放手去做,发挥他们的 想象力 和创新能力. 通过不断的锻炼,学生们这种自我学习的能力也就慢慢地在无形中被培养出来了,只有掌握了学习的能力才会自己主动地去学习,而不是被动地接受知识.

4数学思维训练

学会“反推”

反推就是朝着与认识事物相反的方向去思考问题,从而提出不同凡响的超常见解的 思维方式 。比如,数学几何证明题的“反推”,即让学生从结论向已知条件分析,可以锻炼学生的发散性思维。 例如:如图,?荀ABCD中,∠ADC和∠BCD的角平分线分别交AB于点F和点E。求证:AE=BF。

如何利用反推的方法分析呢?要证明AE=BF,因为EF公用,因此只需证明AF=BE即可;要证明AF=BE,由四边形ABCD是平行四边形可得AD=BC、AB∥DC,因此只需证明AD=AF、BC=BE即可;要证明AD=AF,BC=BE,因为它们分别在△ADF和△BEC中,用“等角对等边”便可得出,因此只需证明∠ADF=∠AFD、∠BEC=∠BCE即可;要证明∠ADF=∠AFD、∠BEC=∠BCE,就要用到AB∥DC和已知条件中的角平分线,再利用“等量代换”便可求出。

通过举一反三,培养学生的发散性思维

学生在学习中,往往因为思维定势负迁移的影响,使思维受到某种固定“模式”的束缚,久久不能解脱,教师在进行逆向、变题、变式等训练的同时,教给学生类比和对比的方法,使学生能将知识从纵横两个方面进行联系和比较,形成知识的正迁移,将各种不同的方法结合起来运用,思路越来越开阔,方法越来越灵活,以致达到举一反三的效果。例如,有这么一道数学题:“淤泥中心一小兴趣小组共有学生50人,女生占全组人数的男、女生各多少人?”这时教师可以试着让学生们寻找出题中的一个已知条件,即“女生占全组人数的”来指引学生尝试在不改变它们的数量关系,而改变一下表达方式。

其实这个条件,用所学“百分数”的形式来表达时,可以改为:“女生占全组人数的40%”;用“比例”的形式来表达又可以改为“女生和男生的人数比是2:3”;假如把条件中的标准量改变一下转个弯,则又可以改为:“女生人数是男生人数的倍”;或者“男生人数是女生人数的”;再如果能用比较复杂且灵活运用“分数比”关系表达,则又可以将标准量改为“女生人数的相当于男生人数的”或者“男生人数的相当于女生人数的 ”等等,诸如此类“ 发散思维 ”的问题。如果当学生在做习题时具备了上述这些灵活运用发散思维,并能通过“举一”就能“反三”的转化能力。那么就充分说明学生对数学概念掌握得很牢固,对题中的问题要求理解得很透彻,这样学生们的思路就开阔了,解题时的办法也就多了,解题速度也就提高了。这就是所为的通过“发散思维”来“借题发挥”加深概念。


如何快速提高数学思维相关 文章 :

1. 怎样提高孩子的数学逻辑思维

2. 如何提高数学思维

3. 怎么提高数学的逻辑思维

4. 怎样快速提高数学成绩

5. 提高数学成绩的最好方法有哪些

6. 如何快速提高数学的运算和推理能力

7. 怎样去提高数学的逻辑思维

8. 如何快速提高数学成绩?数学该如何复习

Ⅲ 如何培养学生的数学思维品质

如何培养学生的数学思维品质?思维品质就是在思维活动中所表现出来的思维水平和智力、能力的个性差异,表现为思维的深刻性、灵活性、敏捷性、独创性和批判性。下面是我为大家整理的关于如何培养学生的数学思维品质,希望对您有所帮助。欢迎大家阅读参考学习!

1如何培养学生的数学思维品质

思维的灵活性和创新性

在数学学习的过程中最重要的就是知识的运用,学生只有灵活掌握了知识才能在做题、运用时得心应手。在数学的学习中灵活和创新是分不开的,学生只有把知识掌握得“活”才能做到灵活运用,而灵活运用又是创新的基础。所以在初中数学课堂上教师要打破传统的教学模式,让课堂不再束缚学生的思维,在课堂上给学生独立思考和实践的机会,这样学生能更加透彻地了解知识,做到灵活运用,在基础知识上得到创新。在数学教学中培养学生的思维灵活性和创新性的最好途径就是一题多解。教师要抓住教材中可以利用的题型,让学生去探讨、创新,培养学生的思维品质。

例如,在学习“角的比较和运算”的时候,教师可以让学生在纸上任意画一个角,然后用尺子等工具,想一下怎样测量出角的大小。在这个学习过程中教师要让学生积极参与课堂,这样通过体验、思考、探究学生可以更加详细地了解所学内容。只有懂得了知识的本质才能灵活运用,在做题的时候才可以创新。在数学学习过程中灵活学习知识并学会创新,对学生以后的数学学习有很大的帮助。

思维的敏捷性

新课标下,数学教学过程中应以思维的速度为侧重点,以思维的合理性为核心,强化特殊与一般的结合,在熟练中求快,培养思维的敏捷性。思维的敏捷性是指思维过程中正确前提下的迅速和简捷。有了思维的敏捷性,在处理和解决问题的过程中就能根据具体情况进行积极思考,正确做出判断并迅速做出选择。

思维的敏捷性主要表现为能够缩短运算环节和推理过程,而这又有赖于在正确前提下的速度训练。经过练习,从中 总结 经验 ,进而概括出规律,并通过应用而达到熟练的程度,从而产生思维的敏捷性。因此,敏捷性又与概括性紧密相连,推理的缩短取决于概括,能立即进行概括的学生,也能立即进行推理的缩短。

2怎样培养学生的数学思维品质

思维的批判性和严谨性

数学这一学科的学习需要严谨。在教学过程中教师要引导学生用批判性的眼光看待问题,在思考问题时要有自己的见解,不要盲从,这样在学习的过程中学生才能养成独立思考的习惯,并在学习的过程中开阔自己的思维,培养数学思维能力。在初中数学中,很多定理或是公式的运用都是分情况的,教师可以利用这一点在教学过程中让学生看到分不同情况的原因,这样可以让学生体会数学运算中的严谨。例如,在学习“解二元一次方程”的时候,教师可以先不提醒学生注意b2-4ac的值,让学生自己在演算和验证的过程中发现这个问题,这样能使学生亲身体验数学学习中的严谨性,并且能让学生记忆深刻。

在数学学习中让学生有批判思维就要鼓励学生独立思考,在学习过程中做到敢于说出自己的想法。只有敢于想、敢于说才能培养批判思维。同时,在习题处理的时候教师也要让学生学会质疑,敢于质疑,在解决问题的时候有独立的看法,不盲从别人的解题思路,这样才能在学习中打开思维,培养数学思维能力。例如,在学习三角形全等的时候,因为定理之间很容易混淆,所以学生不免会遇到很多问题,这时候教师要给学生发现问题、质疑问题的机会,让学生在学习的过程中学会质疑。在培养学生思维严谨性和批判性的过程中,教师应该引导和鼓励他们,把实践的过程交给学生完成,这样才能起到培养学生数学思维的作用。

鼓励发现问题培养学生的 发散思维

在初中数学教学中,我们要鼓励学生去发现问题,注意培养学生发现问题和提出问题的能力。我们要深入分析并把握知识间的联系,从学生的实际出发,依据数学思维规律,提出恰当的富有启发性的问题,去启迪和引导学生的思维,同时采用多种 方法 ,引导学生通过观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。我们要引导学生广开思路,重视发散思维,鼓励学生标新立异,大胆探索。

例如,已知点P(x,y)是圆(x-3)2+(y-4)2=l上的点,求y/x的最大值和最小值。本题如用参数方程,直接用点在圆上的性质,则解决过程较繁琐,若能打破常规,做恰当点拨,引导学生数形结合,设k=y/x,即求直线y=kx的斜率的最大值和最小值问题,再进一步引导,求(y+1)/(x+2)的最大值和最小值问题,可把定点分圆上、圆内、圆外几种情况进行讨论,则对求y/x之类的数的最大值、最小值问题的几何意义有更深的理解。

3如何培养学生良好的思维品质

传授知识中培养学生的形象思维

初中数学课的教学实践表明,越是抽象的概念,讲授中就越需要形象性地描述,才能使抽象的知识变成学生易于接受的知识。数学教学的形象性,不仅可使数学知识的掌握和思维的启迪建立在感性认识的基础上而且对培养学生的 想象力 有着更重要的作用,数学教学离不开形象思维。一直以来,我总以为数学是一门逻辑性和理论性非常强的学科,主要靠的是教师的讲解和学生的理解、 反思 和练习。但通过对新课程改革指导纲要的学习和实践摸索,我逐渐认识到,数学也要适当发挥创造性,将课堂知识与实践活动相结合,注重运用适当的手段启发和培养学生的形象思维,才能取得好的教学效果。

例如,在学习“代数式”时,我采用以下方法培养调动学生的形象思维。 首先,我问学生:“你们想知道自己将来能长多高吗?”“想。”同学们异口问声的问答。 “那么,请同学们看一个身高预测公式―― 男孩成人时的身高计算公式:(x+y)÷2×108;女孩成人时的身高计算公式:(0.923x+y)÷2;其中x代表父亲的身高,y代表母亲的身高。” 学生们都怀着极大的兴趣,以极快的速度计算着,很快每个学生的预测身高都算出来了,他们带着惊奇的表情,兴奋地互相通报着,有个男生脱口而出:“哇!我能长到1米85”,此时,我不失时机地讲出“每位同学求出的这个数值就叫做这个代数式的值,刚才大家用自己的父母身高代替x和y计算的过程就是求代数式值的过程。”学生恍然大悟,而且印象深刻,思维也得到了锻炼。

利用课堂讨论引发学生的积极思维

课堂讨论是初中数学学习的好方法,课堂讨论的过程是一种思维过程,通过课堂讨论可使学生获得新知,明确问题,进一步强化和深化教师的讲解。数学课堂上可以根据不同内容组织学生进行讨论,互相启发,在争辩中辨别是非,从而引发学生的积极思维。

例如,在讲解二次函数问题:“已知二次函数的图像经过P(2,0)和Q(6,0)两点,对称轴为x=4,顶点在直线y=3/4・x上,求这个二次函数的解析式”时,我组织学生认真分析了题中的已知条件,进行了充分的讨论,很快就有学生发表了自己的见解。学生甲:由题意我们可以得到图像还经过点(4,3),因此我们可设抛物线的解析式为y=ax2+bx+c,把三个点的坐标分别代入得到关于a、b、c的方程组,进而确定二次函数的解析式。学生乙:由题意我们易求图像的顶点为(4,3),因此我们可设抛物线的解析式为y=a(x-h)2+k,利用顶点式确定二次函数的解析式。学生丙:由题意可知图像与x轴的交点为P(2,0),Q(6,0),因此,我们可以把抛物线的解析式设为交点式y=a(x-2)(x―6),再利用图像经过的另一个点(4,3)确定a的取值。讨论的结果,不但有利于促进学生的积极思维,同时也逐步培养了学生能够有条理、有根据地进行思考,并能比较完整地叙述自己的思考过程。

4课堂教学中如何培养学生数学思维品质

通过解题教学,培养思维的广阔性

思维的广阔性是指思路开阔,能全面地分析问题,多方向地思考问题,多角度地研究问题。尤其对数学问题,能够抓住问题的关键,善于对问题的特征、差异和隐含关系等进行具体分析,做出广泛的联想,能用各种不同的方法研究和解决问题,并将其推广应用于解决类似问题。如果在数学教学中有意识地进行逻辑推理方面的训练,是有利于增强学生思维广泛性品质的。

数学教学中要通过一题多解、一题多证、一法多用以及数学中的换原法、判别式法、对称法等在各类问题中的应用来训练学生的思维广阔性。再有,多题比较。把一些具有代表性的题目或一些有相似条件的问题放在一起进行比较,让学生自己去寻求它们的差异、共有的本质及内在联系,以此激发学生的求知欲望,调动学生思维的积极性,扩大学生的视野,以培养学生思维的广阔性。

发展个性品质,培养思维的独创性

思维的独创性是指根据客观现实能独立地发现问题和解决问题,在解决问题的过程中,不是依赖现成的方法和现成的结论,而是自己去进行探索,从而提出新的见解和采用新的方法。这种思维具有一定的“创造”特征。

在美国举行的一次全国中学生数学竞赛中有一道题是这样的:“有一个三棱锥和一个四棱锥,它们的棱长都相等。问,将它们的一个侧面重叠后,还有几个暴露面”。本题的标准答案注明为“7个”,绝大部分考生也回答是“7个”。而一个佛罗里达州的名叫丹尼尔的学生回答:“5个”。结果被判为错答。丹尼尔不服,便自己做了一个实物模型以验证其结论,还给出了证明。最后,经有关的数学家再度思考后才承认他是正确的。实际上,丹尼尔最初完全是凭借直觉来思考的,这就是创造性思维的一种体现。

相关 文章 :

1. 思维提升:初中教学中如何提高思维能力

2. 教会小学生的数学思维

3. 如何培养数学思维

4. 怎样提高数学的逻辑思维?

5. 论小学数学思维能力的培养

Ⅳ 如何培养学生良好的数学思维品质

一、培养思维的灵活性
思维的灵活性是指能随事物的变化而随机应变的及时性,以及不过多地受思维定势的影响,善于从旧的模式或通常的制约条件中摆脱出来。养成学生数学思维的严谨性、深刻性和广阔性,但是没有发展思维的灵活性,就有可能使思维倾向于某种具体的方法和方式,片面地追求分析问题和解决问题的程式化或模式化,产生思维的惰性。
灵活的思维表现为针对知识的运用自如,善于变通和调整思路,善于运用辨让思想进行具体问题具体分析是思维灵活性的重要表现。
二、培养数学思维的严谨性
思维的严谨性是指考虑问题的严密、有据。要提高学生思维的严谨性,必须严格要求,加强训练。
首先要求学生要按步思维,思路清晰,就是要按照一定的逻辑顺序进行思考问题。特别在学习新的知识与方法时,应从基本步骤开始,一步一步深入。
其次要求学生要全面、周密地思考问题,做到推理论证要有充分的理由作根据。运用直观的力量,但不停留在直观的认识上;运用类比,但不轻信类比的结果;审题时不但注意明显的条件,而且留意发现那些隐蔽的条件;应用结论时注意结论成立的条件;仔细区分概念间的差别,弄清概念的内涵和外延,正确地使用概念;给出问题的全部解答,不使之遗漏。
三、培养数学思维的深刻性
思维深刻性是指思维活动的抽象程度和逻辑水平,以及思维活动的深度和难度。在数学学习中经常有学生对结论不求甚解,做练习时照葫芦画瓢,根本无法领会解题方法的实质,离开书本和老师就无法独立解题。这种现象正是学生在长期的学习中缺乏思维深刻性的表现。要克服这一现象,必须有意识地经常进行思维的深刻性训练。
1、透过现象看数学本质 能否透过表面现象,洞察数学对象的本质及联系,是思维深刻与否的主要表现。很多的数学问题,条件关系比较隐蔽,如果只看问题的表面,是无从下手的。因此在数学学习中,要进行由表及里的思索,抓住问题的本质和规律。
2、注意审题认真和防止思维定势 学生在用某种思维模式多次解决同类问题而形成思维定势之后,再遇到相类似的新问题时,往往会表现出机械套用以前思维模式的倾向,而且同一方法使用次数越多,这种倾向就越明显。
四、培养思维的广阔性
思维的广阔性是指对一个问题能从多方面考虑。具体表现为对一个事实能作多方面的解释,对一个对象能用多种方式表达,对一个题目能想出各种不同的解法。在数学学习中,注重多方位、多角度的思考方式,拓广解题思路,可以促进学生思维的广阔性。
五、培养思维的批判性 思维的批判性是指思维活动中善于严格地估计思维材料和精细地检查思维过程。在数学教学中,学生思维的批判性表现为愿意进行各种方式的检验和反思,对己有的数学表述或论证能提出自己的看法,不是一味盲从,思想上完全接受了东西,也要谋改善,提出新的想法和见解。

Ⅳ 如何培养良好的数学思维品质

思维就是人的理性认识过程。所谓数学思维,是指人关于数学对象的理性认识过程,广义的可理解为,包括应用数学工具解决各种实际问题的思考过程。思维能力的高低,直接影响到数学学习的效果,因此,培养学生的数学思维能力是提高数学教学效益的关键。要提高学生的思维能力,首先要就要养成学生良好的思维习惯,而思维习惯的形成,又要落实到思维品质的形成上。良好的数学思维品质主要包括思维的严谨性、深刻性、广阔性、灵活性和批判性,下面分别就这几种品质进行讨论。
一、培养数学思维的严谨性
思维的严谨性是指考虑问题的严密、有据。要提高学生思维的严谨性,必须严格要求,加强训练。
首先要求学生要按步思维,思路清晰,就是要按照一定的逻辑顺序进行思考问题。特别在学习新的知识与方法时,应从基本步骤开始,一步一步深入。
其次要求学生要全面、周密地思考问题,做到推理论证要有充分的理由作根据。运用直观的力量,但不停留在直观的认识上;运用类比,但不轻信类比的结果;审题时不但注意明显的条件,而且留意发现那些隐蔽的条件;应用结论时注意结论成立的条件;仔细区分概念间的差别,弄清概念的内涵和外延,正确地使用概念;给出问题的全部解答,不使之遗漏。
二、培养数学思维的深刻性
思维深刻性是指思维活动的抽象程度和逻辑水平,以及思维活动的深度和难度。在数学学习中经常有学生对结论不求甚解,做练习时照葫芦画瓢,根本无法领会解题方法的实质,离开书本和老师就无法独立解题。这种现象正是学生在长期的学习中缺乏思维深刻性的表现。要克服这一现象,必须有意识地经常进行思维的深刻性训练。
1、透过现象看数学本质
能否透过表面现象,洞察数学对象的本质及联系,是思维深刻与否的主要表现。很多的数学问题,条件关系比较隐蔽,如果只看问题的表面,是无从下手的。因此在数学学习中,要进行由表及里的思索,抓住问题的本质和规律。
例1:商店有红气球17个,红气球比黄气球少9个,花气球的个数是红气球的3倍,花气球有多少?
分析:一个应用题含有两个未知的数量,一般情况下是不可求解的,但本题却要求花气球的个数,显然该应用题中可以转变为只含一个未知数量(花气球数量)的应用题。即红气球的个数可先由已知条件求出,这样透过现象,看到了问题的本质,明确了转变的方向。
解:(1)红气球有多少个?
17-9=8(个)
(2)花气球有多少个?
8×3=24(个)
答:花气球有24个。
2、注意审题认真和防止思维定势
学生在用某种思维模式多次解决同类问题而形成思维定势之后,再遇到相类似的新问题时,往往会表现出机械套用以前思维模式的倾向,而且同一方法使用次数越多,这种倾向就越明显。
例2:动物园里养了45只八哥、32只黄莺,养的黄莺和孔雀的总数比八哥少8只,养了几只孔雀?
由于习惯上常把黄莺和八哥的个数相加得两种鸟的总数,不少学生把此题中黄莺和孔雀的总数误认为是黄莺和八哥的总数,在解题时出现了错误。要克服学生这种思维定势,可以在平时的作业、练习中多培养学生多观察、多思考、多分析。另外,有意识安排适当反例,引诱学生上当,让学生吃一堑长一智。
三、培养思维的广阔性
思维的广阔性是指对一个问题能从多方面考虑。具体表现为对一个事实能作多方面的解释,对一个对象能用多种方式表达,对一个题目能想出各种不同的解法。在数学学习中,注重多方位、多角度的思考方式,拓广解题思路,可以促进学生思维的广阔性。
例如,求一个长方形的周长,既可以用四条边相加的方法计算,也可以分别先算出两条长、两条宽的长度再相加,更简便的可以先把长和宽先加起来再乘以2,得出结果。
四、培养思维的灵活性
思维的灵活性是指能随事物的变化而随机应变的及时性,以及不过多地受思维定势的影响,善于从旧的模式或通常的制约条件中摆脱出来。养成学生数学思维的严谨性、深刻性和广阔性,但是没有发展思维的灵活性,就有可能使思维倾向于某种具体的方法和方式,片面地追求分析问题和解决问题的程式化或模式化,产生思维的惰性。
灵活的思维表现为针对知识的运用自如,善于变通和调整思路,善于运用辨让思想进行具体问题具体分析是思维灵活性的重要表现。
例3:用简便方法计算242-97+55
分析:这是一道加减法综合计算题,用常规方法进行简便计算的话,解法如下:
242-97+55
=242-100+3+55
=142+3+55
=145+55
=200
在计算中只第一步显示比较方便,在其他步骤中并没有体现出太大优势。如果我们从另一个角度入手,把97进行不同的分解,有如下解法:
242-97+55
=242-42-55+55
=(242-42)-(55-55)
=200
由此可简便求出最后结果。
这种需要打破常规解法的题目,是训练思维灵活性的好办法。除此以外,传统的一题多解也是训练思维灵活性的好办法。
五、培养思维的批判性
思维的批判性是指思维活动中善于严格地估计思维材料和精细地检查思维过程。在数学教学中,学生思维的批判性表现为愿意进行各种方式的检验和反思,对己有的数学表述或论证能提出自己的看法,不是一味盲从,思想上完全接受了东西,也要谋求改善,提出新的想法和见解。
提高学生思维的批判性意识可以从以下几方面进行:
1、培养学生解题后的反思习惯
培养学生解题后的反思习惯,就是培养学生对解题活动进行回顾、思考、总结、评价、调节,也就是对经验与教训的反思。解题顺利时,要考虑解题过程的关键步骤用到了哪个概念、方法、结论;若解题过程中出现了挫折,也要找到原因,是哪部分知识不熟悉造成的。不论是经验还是教训,都能从不同的两个侧面强化数学的有关知识,这是提高数学思维批判性的前奏;其次是对问题的答案进行检验和分析,推理是否合理,论证是否充分;最后是考虑是否有其他的解法。
2、教学中经常进行改错训练
思维批判性的反面是无批判性,这也是许多中小学生的特点,他们常常表现为轻信结论,不善于或不会找出自己解题中的错误。教师在教学中经常出一些改错题,让学生讨论改正,有助于学生形成思维的批判性。
3、在教学中经常提倡学生不要迷信书本,不要迷信老师,要有自己的独立思考,敢于提出不同的见解。
以上我们就如何养成学生良好的教学思维习惯,讨论了五种主要的思维品质及培养方法。除了严谨性、广阔性、灵活性、批判性,还有探讨性、独创性、目的性等。而这五种思维品质是最为重要的。它们之间互相联系,密不可分。思维的严谨性是学习数学最基本的要求,是思维品质的基础;思维的深刻性和广阔性是在严谨性上建构的结实框架;思维的灵活性在相当程度上影响解题能力的高低,也是思维严谨性、深刻性和广阔性的引申和发挥;思维的批判性则是其它四种思维品质的综合体现。

Ⅵ 如何有效培养学生的数学思维

如何有效培养学生的数学思维?对学生的学习发展至关重要.而数学学习最重要的就是培养学生的一种思维习惯,使学生能够用所习得的数学思维习惯更巧妙地解决数学难题和预习未知领域的数学知识。下面是我为大家整理的关于如何有效培养学生的数学思维,希望对您有所帮助。欢迎大家阅读参考学习!

1如何有效培养学生的数学思维

采用启发式教学法

为了更好地提升课堂教学质量,新课改过程中提出了很多新的 教学 方法 与技巧。本人在实际的教学中发现,为了有效培养小学生的数学思维能力,教师要实现课堂教学方法的多样化,与此同时,本人认为教师在培养学生的数学思维能力的过程中应该引起高度重视的一种方法,就是启发式教学法。想要使学生的数学思维能力得到有效提升,学生就必须进行大量的思考,如果教师能够将引导学生有效思考渗透到课堂教学的每一个环节,那么,势必会收到良好的教学效果。

启发式教学法就是一种在课堂教学中能够引导学生有效进行思考的方法,教师一边对学生进行数学知识点的讲解,一边引导学生通过思考积极主动去获取知识,提升了学生获取知识的效率;另一方面,学生的思维也变得更加活跃。当然,教师在采用启发式教学法的过程中,也要结合教学内容与学生的实际情况开展,一旦教师在引导学生通过思考获取知识的过程中学生出现思维障碍,教师就要及时进行调整,避免学生在获取知识的过程中出现压力过大的情况。

加强师生之间的有效互动

为了有效培养小学生的数学思维能力,教师在教学的过程中应该为学生提供更过思考的机会。在实际的教学中加强师生之间的有效互动,就是一个能够有效培养学生的思维能力的方法。教师在教学的过程中积极的与学生进行互动,可以通过多种途径引导学生进行思考,将学生的注意力吸引到课堂教学中来。

教师如果在教学的过程中采用“灌输式”教学法对学生进行知识点的讲解,学生机械的接受知识,学生的思维不仅不会变得更加活跃,而且会越来越僵硬。教师只有通过与学生之间有效进行互动,才能将学生纳入教学过程,学生才能紧跟教师的教学步骤积极进行思考,使学生的数学思维变得更加活跃。

2培养数学 逻辑思维 能力

创设适合学生的学习情境

创设问题情境可以改变学生注意的方向和学习的态度。但是如果教学情境的设置与学生实际相脱离,就会出现反复强调知识点但是学生仍然记不住的现象。如“有理数加法”这一课,教师提出了一个关于踢 足球 的问题,而有些农村学生根本不了解足球,这样的背景对学生的学习就没有帮助,反而增加了学习的难度,不利于学生理解新知识。

创设教学情境的关键在于找准切入点,而学生最感兴趣的问题其实就是很好的切入点,能迅速吸引学生的注意力。比如在教学“旅游的租车和购门票中的数学问题”时,可以让学生课前了解当地租车和购门票的相关信息,这样就能够帮助学生进行租车和购门票的方案设计;再比如教学时可以采用“商品打折”“电话计费”的例子。这些实例让学生发现数学就存在于自己的生活中,并与自己的生活密切相关,从而激发他们学习的热情,产生求知的欲望,积极主动地参与到数学活动中去。

培养学生学习数学的兴趣

心理学研究发现,学习兴趣是一种带有强烈情感色彩的认识倾向,它是在过去的知识 经验 ,尤其是在愉快体验的基础上形成的,令人乐于积极而持久地接触某些事物的一种意识倾向。具体表现为对学习的好恶。学习兴趣是学习动机中最现实和最活跃的成分,是推动学生学习活动的内部动力或内在动机。因此数学教学要在培养学生学习兴趣的基础上进行知识的传授,这样课堂效果才有保障。而如何培养学生学习兴趣,则时刻考验着教师的教学艺术。

比如教学“角的比较”时,教师首先出示一张山的图片,并提问“你选择从哪一面上山呢?”以此引出对角度的比较。在布置任务时对学生说:“请一、二组的同学每人任意画出两个角,三、四组的同学每人任意剪出两个角,比较这两个角的大小,并讨论你们的比较方法。”教师通过提出与生活联系紧密的问题来激发学生探究的兴趣,引导学生主动参与,实践证明,这种方法很有效。

3如何有效培养学生的数学思维能力

(一)利用情境教学方式,诱导学生的发散性思维

小学生精力旺盛、活泼好动,加之好奇心重,枯燥的数学教材常常很容易使他们丧失对数学的学习兴趣.为此,教师要通过创新教学方法、教学内容和教学设计,通过在课堂中创设情境教学的方式来激发学生们的学习热情和求知欲望,培养他们的数学发散性思维能力.可以根据不同的教学内容设置教学情境,以小学 三年级数学 中奇偶数教学课程为例,教师可以通过让不同奇偶号学生组队的方式检验他们对知识的掌握情况.

(二)理论联系实际,拓展学生的数学实际应用能力,开拓数学思维

当前数学学习中的一个很大误区就是人们认为数学学习无用,这是因为教师在数学授课中忽视了对学生数学实际应用能力的培养,使学生只是片面地学习数学的理论知识,忽视了对学生实际应用能力的培养.为此,教师在进行课堂设计时要引入相关的实际教学的案例,来帮助学生认识到数学对于实际生活的重要意义.教师可以通过创新数学作业形式,如,通过鼓励学生们记数学 日记 促使他们仔细观察、发现生活中的数学知识,在生活实践中不断应用所学的数学知识.在这种理论联系实际的数学学习中,不断拓展他们的数学实际运用能力,开拓他们的数学思维.

(三)在游戏教学中培养学生的数学思维能力

“ 教育 游戏”在学科教育中的应用在近几年开始受到教育界的追捧.传统的教育方式多是以教师为主,进行理论教学,学生只是被动的倾听者,没有很好地参与到课堂中来,致使学生的学习效果不甚理想.而游戏式的教学方式打破了传统的教育形式.游戏的趣味性不断吸引更多的学生参与到课堂中来,激发了学生的学习热情和课堂参与度,使学生在游戏中学到自己所需要掌握的数学知识.具体方法可以通过在教学设计中引入“24点游戏”来培养学生们的心算能力以及反应速度,多方面调动学生的学习积极性,在游戏中不断培养他们的数学思维能力. 对学生的学习发展至关重要.而数学学习最重要的就是培养学生的一种思维习惯,使学生能够用所习得的数学思维习惯更巧妙地解决数学难题和预习未知领域的数学知识,

4如何培养学生的数学逻辑思维

(1)思维具有灵活性。思维的灵活性特点表现在思维的主体能够根据思维对象的变化,在已有经验的基础上灵活调整原来的 思维方式 ,使新思维能够更高效的解决问题。对小学数学来说,思维的灵活性非常重要,数学的解题方法不是的,学生在解题过程中能够根据题型的不同转化解题方法,转变解题思路,从而找到更适合的解题方法,主要表现在一题多解、变题练习、同解变形等解题方式。例如:200千克海水能够制盐2.5千克,那么50000千克的海水能够制盐多少千克?这属于一题多解,可以通过2.5÷200×50000;50000÷(200÷2.5);2.5×(50000÷200)几种方法来解。

(2)思维具有深刻性。思维的深刻性就是透过现象看本质的能力,它是思维品质的基础。在小学数学中,主要表现在通过表面现象能够引发深入思考,从而发现问题的内在规律和内在联系,找出解决问题的办法。教师可以通过开放性习题进行思维的训练。

(3)思维具有独创性。思维的独创性是指思维具有独立创造的水平,因此,教师在教学中要鼓励学生大胆想象,寻找多种解题方法,不受到常规的解题模式限制,找出解题最简单的方法。例如:把2.5.6三个数字卡片进行组数,如果按照常规的思维模式,组成的数就只有25.26.256.265.52.56?,除了这些数,学生还可以发现“6”的特点,把“6”反过来当“9”用,这样就会组成更多的数,也是思维创造性的一种表现。

(4)思维具有批判性。思维的批判性是指思维主体通过独立思考,有敢于质疑的能力和较强的辨别力,能够发现自己在思维过程中出现的错误,并自觉纠正错误。教师在教学过程中,应该积极引导学生进行独立思考,并在思考中善于发现自己存在的问题,从而独立解决问题,要引导学生学会从不同的角度思考问题,检验和推理自己得出的结论,探索解决问题的新方法。还要鼓励学生多多质疑,提出问题,提出问题的过程也是思考的过程,有利于学生思维批判性的培养。

相关 文章 :

1. 教会小学生的数学思维

2. 如何培养数学思维

3. 怎样提高数学的逻辑思维?

4. 论小学数学思维能力的培养

5. 思维提升:初中教学中如何提高思维能力

Ⅶ 如何提高学生的数学思维能力

如何提高学生的数学思维能力?教师要高度重视学生思维能力的培养,要善于设问题、设疑问、要善于引导学生多思考,使学生的智力和能力得到较多的培养与发展。下面是我为大家整理的关于如何提高学生的数学思维能力,希望对您有所帮助。欢迎大家阅读参考学习!

1如何提高学生的数学思维能力

重视知识的应用过程

学生学习数学的实质是生活常识的系统化,数学离不开学生现实的生活 经验 。《课标》指出:“教学中,应注重学生在实际背景中理解基本的数量关系和变化规律,注重学生经历从实际问题中建立数学模型……”所以,教师要落实“在生活中体验,在体验中感悟,在感悟中成长”的 教育 理念,多为学生提供一些接近生活的内容。

重视知识的形成过程

《数学课程标准》(以下简称课标)指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。学生的数学学习活动应该是一个生动活泼的、主动的、富有个性的过程。这就是说,学习数学知识、形成数学知识的过程应该成为数学课程的重要组成部分,应有与之匹配的学习方式。这就要求教师必须有意识地设计一些探索的学习活动。

重视解题的 反思 过程

解题的最终目的不只是为了解题,还应为培养学生的数学思维能力,这需要回顾及反思解题的过程来实现。因此,有经验的教师总是十分重视解题的回顾与反思,对解题主要思路、关键因素和同类问题解法的概括,从而帮助学生从解题过程中抽象出数学的基本思想加以掌握,并将它们应用于解决新的问题,成为解题的利器。

2如何提高学生数学思维能力

在数学教学中,教师要重视思维过程的暴露。

数学的发展和数学家们走过的道路是充满挫折的,每一个命题的发现和证明,常常是凭着数学家的直觉思维,做出各种猜想,然后加以证实,在这个过程中充满了挫折。但课本却不能把这些都编进去,只能按“定义、公理、例题”的模式编写,直接了当地给出结果,而隐去了数学家们曲折的探索,归纳,猜想,发现的过程。如果教师只讲正确的 方法 ,忽视歧路的分析,在课堂上总是一猜就中。一选就准,一证就对,一用就灵,那学生看到的只能是一个 魔术 师的表演,但学生一遇到挫折就会束手无策。

因此,在数学教学中,教师要重视思维过程的暴露:一要暴露数学家们的思维过程,在知识的发生阶段和认识的整理阶段,让学生参与概念的形成,数学原理和法则的获取及数学方法的形成过程。二要暴露教师的思维过程,对例题和习题的解答,教师要暴露起初的思维过程,努力提示方法的思考选择过程,特别要重视歧路的剖析。有时教师不妨学大数学家富克斯的做法,在课堂上把自己置身于“险境”,开设“即席答题”课,对于学生提出的难题“现想现推”,给学生一个机会,看看老师最初的设想是怎样碰壁的,更看看受到挫折后,教师是怎样调整自己的思想,逐步寻找到正确的对策而战胜挫折的,从而教给学生正视挫折,战胜挫折的方法,培养他们正确对待挫折的良好心理素质。

抓住思维的起始点,发展学生思维

数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生—发展—延伸的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已有的经验开始,或从旧知识引入,这就是思维的开端。从学生思维的起始点入手,把握住思维发展的各个层次逐步深入直至终结。如果这个开端不符合学生的知识水平或思维特点,学生就会感到问题的解决无从下手,其思维脉络就不会在有序的轨道上发展。

例如,在教学新教材第九册的连除应用题时,首先将连除应用题拆分成两道与生活有关的除法应用题,让学生分析数量关系,并列式计算。再出示连除应用题,通过读题、理解题意、分析数量关系,使学生明白这题与上面两道题不同,然后我启发提问:“能不能一步算出每头牛一天产奶多少千克吗?”学生都回答说:“不能。”接着我又提问学生:“既然这道题不能一步算出来,那么应该先算什么,后算什么?”然后让学生分小组分析解答。交流汇报时,有的小组说出了两种算法,甚至有个别小组说出了三种以上的方法。这样从问题入手逐步深化认识,不但能够解决学生思维过程中无从下手的问题,而且有利于使学生的思维发展,培养其思维的流畅性。

3如何发展学生数学思维

引导学生思维,让学生有序思考

只有教给学生正确思考的方法,才能提高学生发现问题、分析问题和解决问题的能力。学生“思考有根据,过程有条理”,学生的初步 逻辑思维 能力就能不断形成。学生的思维就会不断地被激发而“动”起来。 教学时,要针对不同年龄段的学生进行 思维训练 ,如低段学生由于年龄小、数学思维能力弱和数学知识结构独特等特征,因此,要引导学生有序思考之路。

例如:你能用2.5.8三张数字卡片摆出哪些两位数?学生拿到这道题目时,思维是无序的,不能一个不漏的写出所有的两位数。这时就引导学生进行思考:怎样才能一个不漏的写出所有两位数呢?我们可以先把数位表写下来,先把一个数固定在十位上,比如先把2固定在十位上,这时个位上可以分别放5和8,就组成了25和28,接着引导学生从左往右,这时可以把哪个数固定在十位上了(如5),就组成了52、58,最后还可以把谁固定在十位上?(如8),就组成82和85。通过这样的有序引导,学生的思维马上“动”起来。数学思想方法也得到了迁移。

训练 发散思维 ,开阔学生思维

所谓发散思维是指从同一来源材料探索不同答案的思维过程。在数学学习中,发散思维表现为依据定义、定理、公式和已知条件,思维朝着各种可能的方向扩散前进。发散思维最基本的特色是:从多方面、多思路去思考问题。教师妥善于选择具体题例,创设问题情境,精细地诱导学生的求异意识。对于学生在思维过程中时不时地出现的求异因素要及时予以肯定和热情表扬,使学生真切体验到自己求异成果的价值。

对于学生欲寻异解而不能时,教师则要细心点拨,潜心诱导,帮助他们获得成功,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时。就会能动地作出“还有另解吗?”、“再从另一个角度分析一下!”的求异思考。事实证明,也只有在这种心理倾向驱使下,那些相关的基础知识、解题经验才会处于特别活跃的状态,也才可能对题中数量作出各种不同形式的重组,逐步形成发散思维能力。

4如何训练数学思维

突破定势,发展 逆向思维

逆向思维就是突破一般思维定势,从对立、颠倒、相反的角度思考问题。我们常用司马光砸缸的 故事 教育学生学习司马光的机智和聪明。司马光就是把一般思维中的“人离开水”变换成“水离开人”,这就是一种逆向思维的思考。

与常规思维不同,逆向思维是反过来思考问题,是用绝大多数人没有想到的 思维方式 思考问题。运用逆向思维思考和处理问题,实际上就是以“出奇”达到“制胜”的目的。例如教师在讲解“甲乙两车同时从两地开出,相向而行,甲车每小时行36千米,两车相遇时,甲车行了全程的2/5,乙车5小时行完全程,甲车需几小时才能行完全程?”这一相向问题时,若从一般思路引导学生,显得很麻烦,且不易于学生理解。教师可引导学生进行逆向思维:在相遇时(同样多的时间里),甲行了全程的2/5,可知道甲乙的路程比是多少?(2∶3)速度比又是多少呢?(2∶3)再过来想一想,在同一路程(指全程)里甲与乙的时间比又是多少呢?(3∶2)这一引导使学生突然醒悟,思想一转立即想出解题的方法:5×3÷2=7.5(时)。由此可见,若能引导学生学会用逆向思维解题,就可减少运算量,优化解题过程,提高解题能力。

精心组织,让思维逻辑化

1.让思维在兴趣中发展。乐于思考是学生进行逻辑思维的重要条件。只有愿意思维,有思考问题的动力,学生才能在兴趣的驱使下全神贯注进行积极思维。教师在学生进入了积极思维状态后,通过巧妙的引导,就会达到训练学生逻辑思维能力的目的。例如,在新课之前,用数学游戏的方式激起学生兴趣,然后用游戏中的问题作为师生探究的主题,教师在与学生一同探究过程中,通过恰当的点拨与促进就会使学生的逻辑思维有序发展。

2.让思维在情境中发展。相应的情境会孕育相应的逻辑思维能力,思维的火花往往是在问题中绽放的,个人的智慧就是体现在不断发现问题和解决问题之中,并在其中得到发展的。古人云:“学则须疑。”有疑才有问,疑和问的产生实质上就是一个问题情境的产生。所以,教师应善于根据教学的具体内容,精心设计能激发学生的求知欲和思维的问题情境,形成一个有利于思维发展的相对自由的数学课堂氛围。


如何提高学生的数学思维能力相关 文章 :

1. 如何培养学生的数学思维品质

2. 怎样培养学生的数学思维

3. 怎样提高学生的数学逻辑思维

4. 如何有效培养学生的数学思维

5. 如何提高数学思维

6. 教学中怎样提高学生的思维能力

7. 如何提高初中生的数学思维

8. 如何培养数学思维方式

9. 怎样培养数学思维

Ⅷ 怎么提高数学思维能力

一,你要透彻的理解你所学的工具,然后熟悉你所学的工具。
二,你要能在面临问题时想起该用哪个工具。大量的做题很必要,每做一题,你在同时需要找出,解决这道题用了哪本书,哪一张哪一页的哪个知识点。
以及分析,题目里的那句话,哪个词,哪些数据表现出你应该用这个知识点,如果有两种以上知识都可以用来解这道题,哪一种更好,为什么?
通常来说,大学以下教育数学好的人具有这么几个特性,1,对知识点熟悉到无需翻书就可以写出来。2,脑子里通常都有一套筛选机制,可以快速排除掉绝大多数错误的或者繁琐的方法,迅速想到用来解题的知识点。3,如果暂时想不出方法直接解题,敢于通过一些方法对题目进行一定的转换,从而转换成自己会解的题目。

Ⅸ 怎么提高数学思维能力

培养数学思维逻辑的5大途径:

1、培养思维的灵活性

思维的灵活性是指能随事物的变化而随机应变的及时性,以及不过多地受思维定势的影响。如果缺乏思维灵活性,我们的思维就会更加倾向某种具体的方式和方法,很容易出现钻牛角尖的情况,片面追求解决问题的模式化和程序化,长此以往造成思维出现惰性。

擅于从旧的模式和普遍制约条件中脱离出来,找到正确的方向;针对知识可以运用自如,善运用辩证思想来平衡事物之间的关系,具体问题具体分析,懂得变通和调整思路等等,这些是思维灵活性养成的直接表现。

2、培养数学思维的严谨性

思维的严谨性是指考虑问题的严密、有据。要提高学生思维的严谨性,必须严格要求,加强训练。

落实到孩子学习生活中去,就是要求在学习新知识时从基本理念开始,做到在思路清晰的前提条件下稳扎稳打,逐步深入,在这个相对来说缓慢的过程中养成思考问题周密的思维习惯,在进行论证推理时掌握足够的理由作为依据;在练习试题时善于留心题干中的隐蔽条件,详细答题,不吝啬地写出解题思路。

3、培养数学思维的深刻性

思维深刻性是指思维活动的抽象程度和逻辑水平,以及思维活动的深度和难度。相信大多数学生都出现过这样的情况,有时候老师评讲试卷,一听错题的解题过程很容易就懂了,恍然大悟自己居然犯了如此低级的错误,但一旦离开书本和老师就无法领会到解题方法和实质,实现独立解题。这就要求学生在平时的学习中要透过现象看数学的本质,掌握最基础的数学概念,洞察数学对象之间的联系,这是思维深刻与否的主要表现。

4、培养思维的广阔性

思维的广阔性是指对一个问题能从多方面考虑。具体表现为对一个事实能作多方面的解释,对一个对象能用多种方式表达,对一个题目能想出各种不同的解法。在数学学习中,注重多方位、多角度的思考方式,拓广解题思路,可以促进学生思维的广阔性。

5、培养思维的批判性

思维的批判性是指思维活动中善于严格地估计思维材料和精细地检查思维过程。在数学学习的过程中,学生要善于从已有的答案和解题过程中提炼出自己想要的东西,发表自己的见解。不能一味盲从,要学会用批判性的思路去进行各种方式的反思和检验。就算思想上完全接受了东西,也要谋改善,提出新的想法和见解。

以上五种思维品质是提高数学思维能力的必要途径,但大家切勿忽视了一点,就是这五大思维品质之间的紧密联系,不可分一而行,否则会很被思维定势所牵制,出现机械套用之前思维模式的倾向,并且同一种方法使用的次数越多,这种倾向就会越明显。

阅读全文

与如何提升数学思维品质相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:743
乙酸乙酯化学式怎么算 浏览:1408
沈阳初中的数学是什么版本的 浏览:1355
华为手机家人共享如何查看地理位置 浏览:1047
一氧化碳还原氧化铝化学方程式怎么配平 浏览:889
数学c什么意思是什么意思是什么 浏览:1413
中考初中地理如何补 浏览:1305
360浏览器历史在哪里下载迅雷下载 浏览:705
数学奥数卡怎么办 浏览:1393
如何回答地理是什么 浏览:1028
win7如何删除电脑文件浏览历史 浏览:1060
大学物理实验干什么用的到 浏览:1489
二年级上册数学框框怎么填 浏览:1703
西安瑞禧生物科技有限公司怎么样 浏览:984
武大的分析化学怎么样 浏览:1252
ige电化学发光偏高怎么办 浏览:1341
学而思初中英语和语文怎么样 浏览:1656
下列哪个水飞蓟素化学结构 浏览:1427
化学理学哪些专业好 浏览:1490
数学中的棱的意思是什么 浏览:1062