❶ 高中数学如何自习
买几套适合的卷子做。三天一套,其中两天用来找错订正。
把书本知识融会贯通,基础的题做会,然后才能找难题做。
记住:难题是基础题的整合。
❷ 数学自习用英文怎么说
Learn Maths by myself
❸ 数学是什么意思
数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。”
历史
自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系(恩格斯)”的认识(恩格斯),又反映了人们对“可能的量的关系和形式”的认识。数学既可以来自现实世界的直接抽象,也可以来自人类思维的劳动创造。
从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。“数学的根源在于普通的常识,最显着的例子是非负整数。"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结构之上。与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海(A. N. Whiiehead,186----1947)在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔(K,G0de1,1978)不完全性定理的证明,宣告了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,着名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。
❹ 暑假怎么自习高中数学
基础最重要,我走的就是基础流,效果非常好,在我们班我的数学是数一数二的,有不会的题就看课本,把所考察的知识看透(并不是嘴上说说的,这很难,这就是某些人觉得基础流没用的原因),如果真能做到这点,那么没什么题会解不出来。再者,告诉楼主个秘密(当然和本话题无关),做数学题,并不是盲目地做,我数学老师说过:“我只知道我做不下去,但从不会做错。”为什么呢,有很多时候你要选择,你要有严密的思维(这和人生是一致的)当题目做不下去时,你要想,在我所研究的范围内,究竟有没有重或者漏,这会对题目有什么影响。思维全面了,自然不愁做错题。
全是亲身体会,给点分吧
❺ 我是一名初二学生,老实说让我自学后在今年7月参加中考中的数学科目我应该怎么自习啊
数学学习的是一种思维方法,有转化法、赋值法、特殊化等,首先你要多做题,从简单到难,其次你要善于总结,那类题目你不擅长,你要重点攻克,最后,也就是初三下学期,多做一下近几年各地中考模拟题。
❻ 数学语文自习阅读自习外语 这几个科目谁能给我翻译成英文的呀
自习:self-study class 数学:math 语文:Chinese 英语:English 阅读:reading
❼ 数学是什么意思
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
❽ 用什么方法可以自习数学或者很好的预习数学
平时学习方面 1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 2、及时了解、掌握常用的数学思想和方法 学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。 3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。 4、针对自己的学习情况,采取一些具体的措施 (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。 (4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 (5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。 (6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。 (7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 (8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 (9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。 解题方面 数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。 ——首先是精选题目,做到少而精 只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。 ——其次是分析题目 解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。 ——最后,题目总结 解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结: ①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。 ②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。 ③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。 ④能不能归纳出题目的类型,进而掌握这类题目的解题通法
满意请采纳
❾ 如何指导学生上好数学自习课
学生从小学到初中,学习负担明显加重,面对较大的学习强度,往往是措手不及,焦头烂额。而作为一名数学老师,我深有体会的是老师讲十遍,不如自己做一遍,学生需要有一段时间来消化课堂知识,复习旧知识,预习新知识,所以自习课是很必要很关键的。
原来我听班上一名学生说,“自习自习,自己休息”,现在老师都感慨学生学习习惯较差,自习课无所事事,别说学习效率了,就连纪律都很难保证。所以老师要合理指导学生,教会他们怎样上好自习课!
一般晚自习是两节课,第一节课我要求学生只能完成与数学有关的内容,第二节课可以自己安排,学习内容不作要求。在课前把对本节课的要求安排告诉大家,可以是规定一个内容学习,不提任何问题,让学生自己整理内容涉及的知识点,哪个内容是自己理解了的,哪个问题是自己还未弄清楚的,下课前书面反馈给老师。也可以,规定一个内容学习,提出几个相关问题,学生弄清了问题,就达到了学习目的。反正,一句话要让学生有事可做,而且所提问题起点要底一点,让大部分的学生可以完成。
经过一段时间的实践,学生自主学习的能力加强了,自习课上讲话,讨论的现象少了,大多数学生不再无所事事。我想,对初中生来说,自学能力是一项很重要的能力,培养自学能力关系到学生的后续发展,对他们以后的学习有很大的帮助。
❿ 数学是什么意思
数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
数学分支
1:数学史
2:数理逻辑与数学基础
X轴Y轴(4张)
a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科
3:数论
a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科
4:代数学
a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科
5:代数几何学
6:几何学
a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
7:拓扑学
a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科
8:数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科
9:非标准分析
10:函数论
a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科
11:常微分方程
a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科
12:偏微分方程
a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科
13:动力系统
a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科
14:积分方程
15:泛函分析
a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科
16:计算数学
a:插值法与逼近论b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科
17:概率论
a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科
18:数理统计学
a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科
19:应用统计数学
a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟
20:应用统计数学其他学科
21:运筹学
a:线性规划b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科
22:组合数学
23:模糊数学
24:量子数学
25:应用数学 (具体应用入有关学科)
26:数学其他学科
发展历史
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意.古希腊学者视其为哲学之起点,“学问的基础”.另外,还有个较狭隘且技术性的意义——“数学研究”.即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的.
其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).[1]
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学).
就纵度而言,在数学各自领域上的探索亦越发深入.
图中数字为国家二级学科编号.
结构
许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗理论解决了,它涉及到域论和群论.代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法.
空间
空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常着名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学.数和空间在解析几何、微分几何和代数几何中都有着很重要的角色.在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化.
基础
旋转曲面(8张)
主条目:数学基础
为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来.德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献.
集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具.20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”
逻辑
主条目:数理逻辑
数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果.就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性.
符号
主条目:数学符号
也许我国古代的算筹是世界上最早使用的符号之一,起源于商代的占卜.
我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的.在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序.现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步.它被极度的压缩:少量的符号包含着大量的讯息.如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码.
严谨性
数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”.
严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或"证明",而这情形在历史上曾出现过许多的例子.在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理.今日,数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.
数量
数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数.
另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.
简史
西方数学简史
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了.
更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统.
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究.
西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念.
17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展.
中国数学简史
主条目:中国数学史
数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合.