导航:首页 > 数字科学 > 数学研究方向有哪些

数学研究方向有哪些

发布时间:2022-02-11 05:19:51

‘壹’ 研究生应用数学的研究方向有哪些

专业轮廓
应用数学是数学5个二级学科中内涵宽泛的一个。严格说来,计算、运筹、统计都是应用类的数学学科,但我们现在所指的应用数学的涵义要窄得多,基本上只分为两个大方向:计算机图形图像(CAGD)和小波分析。CAGD主要指运用现代数学的方法进行图像图形理论及其应用的研究,具体在图像变换和压缩、图形的变形和生成等方向,还包括微分方程、计算几何和科学计算等方向。计算机图形图像主要包括图像处理、计算机图形学、计算机辅助几何设计、科学计算、医学图像重建。小波分析就是指分形几何和小波分析,还有逼近论。
[关键词] 前景
sy1133(2004级应用数学博士):应用数学是交叉学科,所以我觉得只要有应用背景的数学问题都可以看作是这个学科的发展,从这个角度看,应用数学的发展是非常繁盛的。
林彬彬(2007级应用数学硕士研究生):应用数学在国内起步比较晚,但很热门,不过国内发展水平和国际还有一定差距。应用数学专业的毕业生发展方向很多,涉及IT、信息、计算机图形的行业都是不错的选择。

‘贰’ 数学方向有哪些好的研究专业

这要看你喜不喜欢埋头做研究了。如果是纯理论,可以考虑微分方程数值解有关(如常和偏,甚至有限元法)、泛函分析相关的;如果对程序有兴趣,可以考虑应用方向的,比如埋头搞目前一些智能算法的理论分析,有点难哦,要懂矩阵分析或者随机理论;还可以搞和数学有关的算法和图像处理结合;金融数学相关等。另外还看你想以后从事哪行业,这就更复杂了。基本上学数学的就是进高校或科研单位吧,目前很多数学类研究生进了中学,不过很多是市区的,待遇还不错。希望对你有用。

‘叁’ 数学专业考研选择方向有哪些

恩波考研梁老师:

  1. 基础数学(应用数学)

    专业概况:

    数学系一般开设基础数学、应用数学两专业,而这两个专业方向基本是相通的,都是为培养数学和其他高科技复合型人才打下基础。基础数学学科较多地涉及:代数、拓扑、几何、微分方程、动力系统、函数论等,它的专业方向和课程设置覆盖面比较宽,理论知识所占的比重相对较大。应用数学则与其他学科综合交叉。

2.概率论与数理统计(概率与统计精算)

专业概况:

概率论与数理统计是20世纪迅速发展的学科,主要研究各种随机现象的本质与内在规律,以及自然、社会等学科中不同类型数据的科学的综处理和统计推断方法。随着人类社会各个体系的日益庞大、复杂、精密以及计算机的广泛使用,概率统计在信息时代的重要性也越来越大。本专业的重点在于为学生打下坚实的数学基础,培养科研创新能力,了解并掌握丰富的现代统计方法。

3.数学工程的科学与工程计算系

专业概况:

科学与工程计算是伴随着计算机的出现而迅猛发展起来的新学科,涉及计算物理、计算化学、计算力学、计算材料学、环境科学、地球科学、金融保险等众多交叉学科。它运用现代数学理论与方法解决各类科学与工程问题,分析和提高计算的可靠性、有效性和精确性,研究各类数值软件的开发技术。既突出了解决信息、电子与计算机领域中的某些核心理论技术问题,又注意到从这些高新技术中抽象出新的数学理论;在保持应用数学与计算数学主体研究方向优势的基础上,重视并加强信息科学的数学基础、数据分析与统计计算、科学计算、现代优化、电子系统的数值模拟、生物系统的数学建模等研究。

‘肆’ 基础数学有哪些研究方向

这个问题很难
①逻辑主义。
以罗素和A.N怀特海为代表。他们认为所有数学概念都归结为自然数算术的概念,而算术概念可借助逻辑由定义给出。他们试图建立一个包括所有数学的逻辑公理系统,并由此推出全部数学。逻辑主义认为数学是逻辑的延伸,在罗素的公理系统中不得不引用了非逻辑的选择公理和无穷公理。如果没有这两条公理就无法推导出全部算术,更不用说全部数学。当然,罗素的公理系统充分发展了数理逻辑的公理体系,并且在此基础上展示了丰富的数学内容,对数理逻辑和数学基础的研究起了极大的推动作用,贡献是很大的。

②直觉主义。
又称构造主义。它的代表人物是L.E.J.布劳威尔。直觉主义者认为数学产生于直觉,论证只能用构造方法,他们认为自然数是数学的基础。当证明一个数学命题正确时,必须给出它的构造方法,否则就是毫无意义的,直觉主义认为古典逻辑是从有穷集合及其子集抽象出来的,把它应用于无穷数学就必然引起矛盾。他们反对在无穷集合中使用排中律。他们不承认实无穷体,认为无穷是潜在的,只不过是无限增长的可能性。可构造性对数理逻辑及计算技术的发展有重要作用。但直觉主义使数学变得非常繁琐复杂。失去了数学的美,因而不被大多数数学家接受。

③形式主义。
以D.希尔伯特为代表,可以说是希尔伯特的数学观点和数学基础观点。希尔伯特主张捍卫排中律,他认为要避免数学中的悖论,只要使数学形式化和证明标准化。为了使形式化后的数学系统不包含矛盾,他创立了证明论(元数学)。他试图用有穷方法证明各个数学分支的和谐性。1931年K.哥德尔证明了不完全性定理,表明希尔伯特方案不能成功。后来许多人对希尔伯特方案加以改进。W.K.J.基灵利用超限归纳法证明了算术的无矛盾性。在数学基础的研究中,鲁宾孙, P.J.科恩自称为形式主义者(希尔伯特本人不认为自己是形式主义者),他们认为数学所研究的不过是一些毫无内容的符号系统,“无穷集”,“无穷整体”等在客观上是不存在的。希尔伯特的设想虽然没有实现,但却创立了证明论,又促进了递归论的发展,因此对数学基础的研究有很大的贡献。

‘伍’ 数学专业考研方向有哪些

数学考研网络网盘免费下载

链接:

提取码: wka8

针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)。具体不同专业所使用的试卷种类有具体规定。

‘陆’ 数学考研有哪些方向

《数学》网络网盘免费下载

链接:

提取码: pnma

数学考研历年题目

‘柒’ 计算数学有哪些研究方向

我正在学计算数学。也没弄太明白。
课程有:
数值分析,数值逼近,泛函分析,数学物理方程,数据结构,科学计算实验,信号与系统。

‘捌’ 当今数学的研究方向

简单列一下现代数学的分支,希望对你有帮助。具体的你去查相关资料(人类的知识真是浩如烟海,永远也学不完啊): 最早的数学──算术算术是数学中最古老、最基础和最初等的部分高等代数初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。生活中的几何──欧式几何几何学史数学中最古老的分支之一,也是在数学这个领域里最基础的分支之一。坐标法──解析几何十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。微分几何微分几何学是运用数学分析的理论研究曲线或曲面在它一点邻域的性质,换句话说,微分几何是研究一般的曲线和曲面在“小范围”上的性质的数学分支学科。代数几何学用代数的方法研究几何的思想,在继出现解析几何之后,又发展为几何学的另一个分支,这就是代数几何。代数几何学研究的对象是平面的代数曲线、空间的代数曲线和代数曲面。微积分学微积分学是微分学和积分学的总称。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。实变函数论微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。数学家广泛地研究并建立起它的许多分支,是它很快就形成了数学中的一大部门,也就是数学分析。常微分方程微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。概率和数理统计我们把由大量同类随机现象所呈现出来的集体规律性,叫做统计规律性。概率论和数理统计就是研究大量同类随机现象的统计规律性的数学学科。近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。概率论和数理统计是一门随机数学分支,它们是密切联系的同类学科。但是应该指出,概率论、数理统计、统计方法又都各有它们自己所包含的不同内容。数理逻辑逻辑是探索、阐述和确立有效推理原则的学科,最早由古希腊学者亚里士多德创建的。用数学的方法研究关于推理、证明等问题的学科就叫做数理逻辑。也叫做符号逻辑。模糊数学二十世纪六十年代,产生了模糊数学这门新兴学科。模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检验。数学物理学数学物理学是以研究物理问题为目标的数学理论和数学方法。它探讨物理现象的数学模型,即寻求物理现象的数学描述,并对模型已确立的物理问题研究其数学解法,然后根据解答来诠释和预见物理现象,或者根据物理事实来修正原有模型。数学中的皇冠──数论数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 代数学、几何学、分析数学是数学的三大基础学科,数学的各个分支的发生和发展,基本上都是围绕着这三大学科进行的。

阅读全文

与数学研究方向有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1259
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1348
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:824
武大的分析化学怎么样 浏览:1212
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016