㈠ 教学大纲里的双基和两种能力分别是什么
教学大纲里的双基:基础知识、基础能力
和两种能力分别是逻辑思维能力和逻辑推理能力
㈡ 双基变四基具体是什么
“双基”:基础知识、基本技能; “四基”:基础知识、基本技能、基本思想和基本活动经验.“四基”与数学素养:●掌握数学基础知识 ●训练数学基本技能 ●领悟数学基本思想 ●积累数学基本活动经验
受启发于黄小周老师的提问,对研讨问题做了完善!
㈢ 数学新课标为什么把二基变为四基
四基贯穿整个数学教学,在不同学段和不同领域的教学中都应当体现四基。
双基已经不能适应时代潮流了,新课标明确提出了“四基”、“四能”,即学生通过学习,获得必需的基础知识、基本技能、基本思想、基本活动经验;将“双基”拓展为“四基”。
体现了对于数学课程价值的全面认识,学生通过学习不仅仅获得必需的知识和技能,还要在学习过程中积累经验、获得数学发展和处理问题的思想。
教学实践中
无论是教学目标的定位,教学活动的设计,教学内容的呈现还是教学的展开过程都应当考虑如何关注四基,体现四基。 四基更强调的是学生两种能力的培养,即发现问题和提出问题的能力,分析问题和解决问题的能力。
两种能力体现了学生创新学习的基本过程,也是一个完整的探索研究的过程。只有对课标与课程理解透彻,具体,才能处理好知识,技能。能力三者之间的关系,才能提高数学教学的实效性。
㈣ 高中数学双基指的是什么
“双基”指“基础知识和基本技能”
“双基”是我国数学教育界普遍使用的一个名词
㈤ 双基变四基,如何帮助学生获得数学活动经验
随着数学新课程对“过程与方法”的关注,“数学基本活动经验”日益成为数学教育的一个热门话题。人们对其内涵、组成、教育意义等都进行了深入的探讨。但如何在实际教学中帮助学生有效地积累数学基本活动经验,仍值得研究。本文略提几点想法。求教于大家。
一、在操作活动中侧重于丰富来自感官、知觉的经验。
“基本活动经验是个体在经历了具体的学科活动之后留下的、具有个体特色的内容,既可以是感觉知觉的,也可以是经过反省之后形成的经验。”在数学活动中,学生通过外显的行为操作,对学习材料的第一手直观感受、体验和经验一般是直接经验。这类操作的直接价值并不是问题的解决,而是对学习材料的感性认识。例如,在学生研究“三角形内角和”问题时,一位学生把任意三角形的三个内角撕下来,将角的顶点重合并依次拼在一起,发现正好形成一个平角,从而得出直观视觉印象:三角形的内角和是180度。这个过程,学生费时不多,但是亲自动手试一试的操作活动让他获得了对三角形内角和的直观感受。尽管类似于这样感知明显带有个体认识的成分,并且还存在原始、肤浅、片面、模糊地特征,但这类直接经验的获得、是构建个人理解不可或缺的重要素材。
当然,要使这类经验能合理地积淀,有时还需要经历一个判断、筛选、确定的环节,因为学生首次操作感知的结果并不一定是正确的,而错误的经验将会对学生的后续学习带来负面的影响。举个例子来说,在教学“认识角”时,许多教师都会让学生去摸一摸具体实物上“角的顶点”,然后让学生说一说有什么感觉。学生往往会回答:“角的顶点时尖尖的,摸上去有刺痛的感觉。”这个回答体现了学生的认知起点及初始经验处于“生活数学”范畴,不足以反映数学的本质特征,如果教师不及时加以纠正和引导,那么在接下去的练习中就有可能会出现类似钟面上指针的针尖也是角、墙角也是角的错误认识。因此,数学活动所期望学生获得的经验应与某些生活经验加以区别。
再如,在教学“面积单位”时,教师往往会借助多媒体的演示力求使学生获得更充分的关于平方厘米、平方分米以及平方米的表象。这一出发点是好的,但在实际教学过程中却有可能由于夸大了多媒体给他带来的错误体验。许多教师往往会指着屏幕上被放大很多倍的正方形向学生介绍——边长是1厘米的正方形面积是1平方厘米。到底1平方厘米有多大?是学生手上的指甲盖那么大小的正方形还是屏幕上一块手绢大的正方形?如果教师此时不加以强调和规范,那么学生对于1平方厘米表象的而建立就会受到影响,屏幕上被放大的“1平方厘米”很有可能会成为学生直观感知后的错误经验,形成对后续学习的干扰。因此,在经验获得的初始阶段,应该尽可能地使一些操作活动为学生的认知提供一个较为正确、清晰地体验,而不是模棱两可、似是而非的感知。经验的全面性和准确性必须为教师所重视,在提供素材、组织操作活动以及课堂提问、归纳时,教师也要充分考虑到上述因素。
二、在探究活动中侧重于融合行为操作经验与思维操作经验。
在数学课堂中,我们经常会向学生抛出特定情境下的某些问题,让学生进行动手操作、自主探究、合作交流,这其中,既有外显的行为操作活动,也有思维层面的操作活动。学生能获得融直接经验与间接经验为一体的数学活动经验。这类探究活动直接指向问题的解决而非获取第一手直观体验。学生不仅在活动中有体验,在活动前、活动中、活动后都有经历的数学思考。
例如,在教学三年级上册“统计与可能性”一课时,教师一般会让学生做“摸球”实验来感受可能性的大小。基于学生已有的知识经验,在已知盒内有9个白球和1个黄球的前提下让学生猜摸到哪种颜色球的可能性大,对学生来说已经毫无新鲜感,因此教师变化角度展开如下数学活动:“(出示盒子)同学们,这个盒子里放有白色和黄色的球共10个,不过两种球的数量不相等。如果不打开盒子看,你们有办法知道哪种颜色的球多吗?”面对这样一个问题,不同层次的学生会充分调动各自已有的经验来尝试解决。有的同学用猜的方法,随即因其结果的不确定性被同伴否认。也有同学认为可以用摸球的方法,每次摸出一个看看颜色,然后放回去摇匀再摸,多摸几次,最后看摸到哪种颜色的球多,就说明这种颜色的球多。此时的动手操作和实验成了学生探究的需要,由于学生对实验的结果充满渴望,因此在这类探索活动中,学生所积累的数学活动经验也因个体的强烈感受而充满活力。不可否认的是,虽然在某些问题的解决中,某种经验本身就具有很好的知道作用和实际价值,但要使数学活动经验更长效地纳入学生的个体知识体系,还需要经历一个概念化和形式化的过程,这是经验与“双基”相互融合、向“思想”升华的必要途径。
三、在思维活动中侧重于积累和提升策略性、方法性经验。
在思维操作活动中获得的经验即思维操作的经验,比如归纳的经验、类比的经验、证明的经验,等等。就一个人的理性而言,思维过程也能积淀出一种经验,这种经验就属于思考的经验。一个数学活动经验相对丰富并且善于反思的学生,他的数学知觉必然会随着经验的积累而增强。
例如,在研究“比的基本性质”时,教材要求学生根据小冬测量几瓶液体的质量和提及的记录,填写质量和体积的比值,由此启发学生观察等式,联系对分数的基本性质的已有认识进行合情推理,探索比的基本性质。尽管学生对液体质量与体积的比值所表示的实际意义——“密度”不太了解,但是由于有着对之前学习的商不变规律、分数的基本性质的探究经验,大部分学生会产生一个数学直觉,那就是在“比”中存在类似的性质。“比的前项和后项同时乘或除以相同的数(0除外)比值不变”这个结论便是依据类比的经验得出的。而随即展开的验证活动中,学生也能从过去相关的经验中找到方法上的支撑,因此,教师在这段内容的处理能够可以大胆放手。学生类似的经验越丰富,新知就越容易主动纳入到已有的知识体系之中。教师所要做的便是对这些经验进行梳理,帮助学生发现其本质的异同,继而将学生发现的一个个知识“点”连接成一串知识“链”,进而构成牢固的知识“网”。
在上述教学案例中,学生的经验生成是在思维层面进行的,没有依附于具体的情境,仅在头脑中进行合情推理,并且整个过程更趋于有序。从获得的经验类型来看,这类活动中获得的经验相对前两种更侧重策略和方法,也更为理性。从这点上可以看出,思考的经验的获取是派生出思维模式和思维方法的重要渠道,这些成分对学生开展创新性活动具有十分重要的奠基作用。
四、在综合活动中侧重于发展整合、应用的经验。
现实中,许多数学活动都会要求学生有多种经验参与其中,不仅有操作、探究的经验,也要有思考的经验,更需要有应用的意识。例如,下图中的两条线段表示两幢新建的大楼。现在要从星处将煤气送往两幢大楼,并且要使煤气管道的长度可能短,你能表示管道的位置吗?
解决这个实际问题需要学生用“直线外一点到这条直线所作的所有线段中,垂线段最短”的知识来诠释生活中的数学问题。如果学生已经具备了应用的意识,并能顺利地作图解答,那么说明他的相关知识经验已经形成,反之,则说明形成不力。对大多数学生来说,总是先进行思维上的深思熟虑而后再进行作图设计,最后实践操作。因此,应用的意识是充分建立在学生思考的经验和操作的经验基础上的。正如朱德全教授所指出的,“应用意识的生成便是知识经验形成的标志。”作为数学基本活动经验的核心成分,应用意识需要教师在教学过程中更多地加以关注和发展。
值得一提的是,越是复杂的数学活动越需要积极地情感意志相伴,这种体验性成分也是学生基本活动经验不可或缺的组成部分,它对于良好人格的塑造具有不可替代的作用。当学生在活动结束后反思其整个解决问题的过程,除了对思考的经验、探究的经验以及具体操作经验有所感悟以外,成功或失败的情绪体验也能逐渐凝聚为其情绪特征的一部分并获得发展。因而,积累学生基本数学活动经验,感性认识、情绪体验及应用意识缺一不可。只有活动经验的均衡发展,才有可能实现学生的全面发展。
㈥ 从两基到四基,我们该做什么
新课程提出由两基变四基:既由以往的基础知识、基本技能变成新课程的基础知识、基本活动经验、基本思想、基本技能两基变四丰富发展了数学教育教学理论,完善了教育教学目的。既保持了过去基本教育要求,又完善了两基的不足。四基的提出体现教师教,学生学习的全过程。为教师教好学生学好每堂课数学知识,起重的依据指导作用。 此次培训使我对新课标的新理念有了更深一层的理解,感受到新课程洋溢着时代的气息,体现着素质教育的理念,令人耳目一新。对于教材的改革也有了一个明确的方向,它不仅让我们对学生的基础性学习、发展性学习和创造性学习抓好加强外,最终让学生享受学习,自主性终身学习。 两基变四基,六个核心词变十个核心词。利用图文并茂,详实例子说明,案例分析的方式,帮助我们了解和记下了,四基就是数学的基础知识、基本技能、基本思想和基本活动经验;十个核心词就是数感、符号意识、空间概念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识。专家们对新课标的进一步解释,是我们了解到新旧教材的产生对比,新课标完成实施一轮改革的总结情况,以及新一轮的新课标教学理念。 在新一轮课程改革之中,新理念、新思路、新方法不断冲击着站在课改浪尖上的教师们。我们曾经困惑,不知所措,但通过学习,我们又以新的姿态站在教育前沿。暑假,我又认真的学习了一遍《数学课程标准》,通过学习更加使我认识到我们教师必须更新原有的教学观念,改变原有的教学模式,不断钻研教材,学习新理念、新方法,全面了解自己的学生,切实地完成好教学任务,把自己的教育教学水平提高到一个新的层次,只有这样才能适应现代教学的需要。因此,本人通过对新课程标准的再学习,有以下的认识: 一、变备教材为备学生 教师在备课过程中备教的方法很多,备学生的学习方法少。老师注意到自身要有良好的语言表达能力(如语言应简明扼要、准确、生动等),注意到实验操作应规范、熟练,注意到文字的表达(如板书编写有序、图示清晰、工整等),也注意对学生的组织管理,但对学生的学考虑不够。老师的备课要探讨学生如何学,要根据不同的内容确定不同的学习目标;要根据不同年级的学生指导如何进行预习、听课、记笔记、做复习、做作业等;要考虑到观察能力、想象能力、思维能力、推理能力及总结归纳能力的培养。一位老师教学水平的高低,不仅仅表现他对知识的传授,更主要表现在他对学生学习能力的 二、对比理解新课程的基本理念,灵活使用教学方法。 我认为正确理解课程标准的基本理念是教好学的关键,因为基本理念是教学的导航。例如,原标准:义务教育阶段的数学课程应突出体现基础性。普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。修订后的标准:数学课程应致力于实现义务教育阶段的培养目标,体现基础性.普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。两者都强调基础性、普及性和发展性。但后者注重的是学生学习数学的情感态度和思想教育。这就更加要求教师注意学生学习的情感态度,灵活采用有效的教学方法,调动学生学习数学的积极性,使不同的学生在数学上不同的发展。 三、抓好四基是发展学生数学的关键。 以前在卷面分析时,我们经常提到双基的落实情况,现在可要说四基了,新加进来的两基我觉得很有时代气息。我觉得抓好四基是发展学生数学的关键。因为,学习数学的目的就是要让学生学会用数学的思维去思考问题,在实际操作中去体会数学,积累数学活动的经验,为应用打下坚实的基础。 四、注意培养学生在生活中发现数学、应用数学的习惯。 数学来源实际生活,教师要培养学生从生活实际中出发,从平时看得见、摸得着的周围事物开始,在具体、形象中感知数学、学习数学、发现数学。教师除了让学生将书本中的知识与生活联系外,还要经常引导学生去发现身边的数学,记下身边的数学,灵活利用已有的数学知识去思考问题,养成应用数学的习惯。
㈦ 从“双基”到“四基”,数学课堂如何把握
《义务教育课程标准(2011版)》(下文简称《新课标》)明确提出使学生获得数学的“基本思想”和“基本活动经验”的目标,从而把“双基”扩展为“四基”.《新课标》明确提出“四基”是数学教育改革的必然要求,是时代发展的必然趋势.“四基”即使学生“获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验”.如何在教学中注重并落实“四基”?让课堂教学更有效呢?在此,笔者将结合自身对“四基”的认识,谈谈如何在初中数学课堂教学中有效落实“四基”.
1 抓住生长点,夯实“基本数学知识”的教学
纵观我们现行的初中数学教材,它们在知识内容的编排上具有联系性和发展性,一些知识的构建往往不是一蹴而就的,而是经过阶段性的孕伏和铺垫,在学生建立了一些认知表象和积累了一定的知识原型后得以完成.
数学知识的教学过程绝非“灌输”“说教”所能“如愿”.要真正使中学阶段的数学知识能促进学生的素养提升,助推学生的终生成长,知识教学必须实现深层的“意义建构”,而非表面的“形式模仿”.有些基础知识点,如正数与负数、函数与图象、不等式等等,在引入这些知识的教学时,往往需要借助有效的情景呈现,及时地唤醒和激发学生原有的认知经验,使得原有的认知经验在某种条件下转化成学生探究的起点,并在活动进程中自始至终发挥积极的导向和启发作用,成为学生知识建构的有效支撑点.
例1 以《正数与负数》为例,在课堂教学中,创设了这样的教学情境:
①天气预报2011年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?(用气温的记录方法唤醒学生的记忆,激活已有认知经验,引发学生思考)
②每个小组指定两名同学进行如下活动:甲同学按老师的指令表演,乙同学在黑板上速记(能准确表达指令),看哪一组获胜.
教师说出指令:
向前两步、向后两步、向前一步、向后三步、
向前两步,向后一步、向前四步,向后两步;……
一名学生按老师的指令表演,另一名学生在黑板上速记.
根据需要再更改指令,重复上述活动,并评选速记最快、方法最好的同学.
教师分析同学们的活动情况,引入符号表示,用符号(加减号)表示出:2+、2?、1+、3?、2+、1?、4+、2?、….(进一步丰富知识原型,为知识建构作好铺垫)
随着问题呈现和解决,学生大脑中的深层记忆被唤醒,原有的认知经验被激活.而实例的展现,又丰富了《正数与负数》这一知识原型,使得支撑概念的表象更加丰满和深刻,为概念的形成提供了重要的探究素材.
2 抓住训练点,加强“基本数学技能”的训练
经验在于积累,作为数学基本活动经验的核心成份,应用意识需要教师在教学过程中更多地加以关注和发展.因此教师在引导学生突破重难点后,还应抓住训练点,让学生在有效的运用模型解决问题的过程中,积累经验,形成技能.
教师组织技能训练时,应在训练中强化:清晰有序的过程、完备美观的格式、严谨到位的细节、规范正确的表达……,不要过分地“以速度论英雄”、“以结果定好坏”,而应在关注正误的同时,认真审视学生在解题过程中真实呈现的格式与习惯,并对照教材要求,及时引领强化,使其形成良好的解题习惯,建立牢固的规范意识.
例2 以《平方差公式》为例,教师在课堂教学中设计了如下的练习:
(1)判断下列多项式与多项式乘法中,能否运用平方差公式.
①(23 )(23 )abab+?;②( 23 )(23 )abab?+?;
③( 23 )( 23 )abab???+;④( 23 )(23 )abab???.
(2)请运用所学的平方差公式进行计算.
在日常课堂教学中,“类比”思想方法的还有很多.教学过程中,教师要引导学生高度关注、深层聚焦其中的“相同或相似”,从而去粗存精、化难为易,既可有效促进知识理解,又能生动彰显“类比”魅力.
4 抓住探究点,推动“基本活动经验”的积累
在学习数学的过程中,由对数学知识的认识而产生的一些体验和意识的积累,就会渐成为一种经验——基本活动经验.数学教学不仅是结果的教学,更重要的是过程的教学,数学课堂教学必须结合具体内容让学生在数学学习活动中去“经历过程”.学生对知识的理解需要丰富有经验背景,如果脱离生活经验,让学生主动提出问题是难度很大,也难以提高学生解决实际问题的能力.教师要让学生在充分感知的基础上,适时地引导学生观察、思考、发现、比较,揭示出感性经验背后的理性、抽象的数学经验,让学生获取具有概括性、普遍性的数学概念.
在有关《统计与概率》教学中,可以让学生利用所学的统计知识和统计方法分小组开展一项统计调查活动(如:周六、周日上网时间).每人(分小组)要完成一次统计调查活动:学生需要制定调查方案,包括如何确定调查问题、如何编制调查问卷、如何进行数据收集、如何进行数据分析、如何得到统计结论并对统计结论进行解释等问题.讨论和解决这些问题的过程,就是每个学生之间不断的分享经验的过程,也是学生积累基本活动经验的过程.
总之,“四基”是数学本质的核心体现,从“双基”到“四基”是多维数学教育目标的要求.只有知识技能是不够的,必须同时发展学生数学素养的其他方面,基本思想和基本活动经验正是学生数学素养的重要组成部分.把握好“四基”的不同内涵,认真领会和灵活运用“四基”理论,课堂教学就能更注重落实数学“四基”,更善于创设真实、扎实、朴实的课堂,学生也能在数学课堂中获得良好的数学教育.
㈧ 为什么要从双基教学到四基教学
为了使数学教育能够适应现代社会对人的发展需要,数学课程目标呈现出若干心变化,其中,从数学“双基”教学,即 关注学生的“数学基础知识”和“数学基本技能”的培养,发展到数学“四基”教学,即基 本知识、基本技能、基本思想、基本活动经验。
㈨ 小学三年级数学双基情况指什么
双基是指基本技能和基础知识。
具体到每个年级需要掌握哪些基本技能和基础知识,需根据所选教材和课程标准而定。
㈩ 2011数学新课标中“双基”变“四基”如何在教学中落实。
与2001年版相比,《数学课程标准(2011年版)》从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下: 一、总体框架结构的变化 2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。 2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。 二、关于数学观的变化 2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。 2011年版:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。 三、基本理念的变化:“三句”变“两句”、“6条”改“5条” 2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。 2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。 “6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。 2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术 2011年版:数学课程——课程内容——教学活动——学习评价——信息技术 四、课程理念中新增加了一些提法 要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。 五、“双基”变“四基” 2001年版的“双基”:基础知识、基本技能。 2011年版的“四基”:基础知识、基本技能、基本思想、基本活动经验。并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。 六、四个领域名称的变化 2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。 2011年版:数与代数、图形与几何、统计与概率、综合与实践。 七、课程内容的变化 更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。 八、实施建议的变化 不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。 下面谈谈“双基”变“四基”如何在教学中落实。 (一)注重学生对基础知识、基本技能的理解和掌握 “知识技能”既是学生发展的基础性目标,又是落实“数学思考”“问题解决”“情感态度”目标的载体。 1、数学知识的教学,应注重学生对所学知识的理解,体会数学知识之间的关联。 学生掌握数学知识,不能依赖死记硬背,而应以理解为基础,并在知识的应用中不断巩固和深化。为了帮助学生真正理解数学知识,教师应注重数学知识与学生生活经验的联系、与学生学科知识的联系,组织学生开展实验、操作、尝试等活动,引导学生进行观察、分析,抽象概括,运用知识进行判断。教师还应揭示知识的数学实质及其体现的数学思想,帮助学生理清相关知识之间的区别和联系等。 数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系,处理好局部知识与整体知识的关系,引导学生感受数学的整体性,体会对于某些数学知识可以从不同的角度加以分析、从不同的层次进行理解。 2、在基本技能的教学中,不仅要使学生掌握技能操作的程序和步骤,还要使学生理解程序和步骤的道理。例如,对于整数乘法计算,学生不仅要掌握如何进行计算,而且要知道相应的算理;对于尺规作图,学生不仅要知道作图的步骤,而且要能知道实施这些步骤的理由。 基本技能的形成,需要一定量的训练,但要适度,不能依赖机械的重复操作,要注重训练的实效性。教师应把握技能形成的阶段性,根据内容的要求和学生的实际,分层次地落实。 (二) 感悟数学思想,积累数学活动经验 数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。 例如,分类是一种重要的数学思想。学习数学的过程中经常会遇到分类问题,如数的分类,图形的分类,代数式的分类,函数的分类等。在研究数学问题中,常常需要通过分类讨论解决问题,分类的过程就是对事物共性的抽象过程。教学活动中,要使学生逐步体会为什么要分类,如何分类,如何确定分类的标准,在分类的过程中如何认识对象的性质,如何区别不同对象的不同性质。通过多次反复的思考和长时间的积累,使学生逐步感悟分类是一种重要的思想。学会分类,可以有助于学习新的数学知识,有助于分析和解决新的数学问题。 数学活动经验的积累是提高学生数学素养的重要标志。帮助学生积累数学活动经验是数学教学的重要目标,是学生不断经历、体验各种数学活动过程的结果。数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中逐步积累的。 教学中注重结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,是学生积累数学活动经验的重要途径。例如,在统计教学中,设计有效的统计活动,使学生经历完整的统计过程,包括收集数据、整理数据、展示数据、从数据中提取信息,并利用这些信息说明问题。学生在这样的过程中,不断积累统计活动经验,加深理解统计思想与方法。 “综合与实践”是积累数学活动经验的重要载体。在经历具体的“综合与实践”问题的过程中,引导学生体验如何发现问题,如何选择适合自己完成的问题,如何把实际问题变成数学问题,如何设计解决问题的方案,如何选择合作的伙伴,如何有效地呈现实践的成果,让别人体会自己成果的价值。通过这样的教学活动,学生会逐步积累运用数学解决问题的经验。