导航:首页 > 数字科学 > 数学模型是怎么分类

数学模型是怎么分类

发布时间:2022-09-21 09:32:56

① 模型的分类

木质模型、水晶模型、ABS树脂模型、金属模型等。
模型可以取各种不同的形式,不存在统一的分类原则。按照模型的表现形式可以分为物理模型、数学模型、结构模型和仿真模型。 也称实体模型,又可分为实物模型和类比模型。
①实物模型:根据相似性理论制造的按原系统比例缩小(也可以是放大或与原系统尺寸一样)的实物,例如风洞实验中的飞机模型,水力系统实验模型,建筑模型,船舶模型等。
②类比模型:在不同的物理学领域(力学的、电学的、热学的、流体力学的等)的系统中各自的变量有时服从相同的规律,根据这个共同规律可以制出物理意义完全不同的比拟和类推的模型。例如在一定条件下由节流阀和气容构成的气动系统的压力响应与一个由电阻和电容所构成的电路的输出电压特性具有相似的规律,因此可以用比较容易进行实验的电路来模拟气动系统。 定义:工业模型,俗称手板、首板模型和快速成型,主要制作方法有CNC加工、激光快速成型和硅胶模小批量生产。工业模型广泛应用于工业新产品设计研发阶段,在最短的时间内加工出和设计一致的实物模型。设计师进行产品外观确认和功能测试等,从而完善设计方案 ,达到降低开发成本,缩短开发周期,迅速获得客户认可的目的。
应用范围: 数码产品(手机、电话机、USB.耳机、摄像头)。 家电医疗产品(电视机、电脑、空调、吸尘器、打印机、复印机、洗衣机、热水壶、按摩器、B超仪)。 3.汽车配件(汽车仪表板、车门、汽车空调、汽车DVD 车灯、反向盘、保险杠)。
如今的工业模型并非手板那么简单,它已经从数码产品、家用医疗产品和汽车配件等转化为大型的机械模型和工程模型。它甚至比建筑模型规模还庞大,工艺难度系数进一步提高。 通过数字计算机、模拟计算机或混合计算机上运行的程序表达的模型。采用适当的仿真语言或程序,物理模型、数学模型和结构模型一般能转变为仿真模型。关于不同控制策略或设计变量对系统的影响,或是系统受到某些扰动后可能产生的影响,最好是在系统本身上进行实验,但这并非永远可行。原因是多方面的,例如:实验费用可能是昂贵的;系统可能是不稳定的,实验可能破坏系统的平衡,造成危险;系统的时间常数很大,实验需要很长时间;待设计的系统尚不存在等。在这样的情况下,建立系统的仿真模型是有效的。例如,生物的甲烷化过程是一个绝氧发酵过程,由于细菌的作用分解而产生甲烷。根据生物化学的知识可以建立过程的仿真模型,通过计算机寻求过程的最优稳态值并且可以研究各种起动方法。这些研究几乎不可能在系统自身上完成,因为从技术上很难保持过程处于稳态,而且生物甲烷化反应的起动过程很慢,需要几周的时间。但如果利用(仿真)模型在计算机上仿真,则甲烷化反应的起动过程只需要几分钟的时间。
数字模型又称数字沙盘,多媒体沙盘、数字沙盘系统等,它是以三维的手法进行建模,模拟出一个三维的建筑、场景、效果,可以在数字场景中任意游走、驰骋、飞行、缩放,从整体到局部再从局部到整体,无所限制。用三维数字技术搭建的三维数字城市、虚拟样板间,交通桥梁仿真、园林规划三维可视化、古建三维仿真、机械工业设备仿真演示借助 pc机、显示系统等起到展示、解说、指挥、讲解等作用。 多媒体沙盘是利用投影设备结合物理规划模型,通过精确对位,制作动态平面动画,并投射到物理沙盘,从而产生动态变化的新的物理模型表现形式。
数字模型通过声、光、电、图像、三维动画以及计算机程控技术与实体模型相融合,可以充分体现展示内容的特点,达到一种惟妙惟肖、变化多姿的动态视觉效果。对参观者来说是一种全新的体验,并能产生强烈的共鸣。数字模型是由国内最大、最早的模型设计制作公司深圳赛野模型提出的一个新概念。其自主开发的数字模拟技术已获得国家专利,并在其韶关规划厅、韶关城市整体规划项目上得到具体体现。数字模型这一新名词将在不远的未来取代传统建筑模型,跃身成为展示内容的另一个新亮点。数字模型超越了单调的实体模型沙盘展示方式,在传统的沙盘基础上,增加了多媒体自动化程序,充分表现出区位特点,四季变化等丰富的动态视效。对客户来说是一种全新的体验,能够产生强烈的视觉震撼感。客户还可通过触摸屏选择观看相应的展示内容,简单便捷,大大提高了整个展示的互动效果。

② 模型都能分为哪几类

咨询记录 · 回答于2021-08-27

③ 数学模型有哪些

内容如下:

1、生物学数学模型

2、医学数学模型

3、地质学数学模型

4、气象学数学模型

5、经济学数学模型

6、社会学数学模型

7、物理学数学模型

8、化学数学模型

9、天文学数学模型

10、工程学数学模型

11、管理学数学模型

数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。

数学模型这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。

因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

④ 数学模型的模型种类

用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。
静态和动态模型
静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。
分布参数和集中参数模型
分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。
连续时间和离散时间模型
模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。
随机性和确定性模型
随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。
参数与非参数模型
用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种系统辨识的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。
线性和非线性模型
线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。

⑤ 数学模型有哪些

数学模型(mathematical model)就是用数学的语言、方法去近似地刻画实际,描述现实问题的数学公式、图形或算法。

数学模型可按不同的方式进行分类。

按照模型的应用领域,可分为人口模型、生物模型、生态模型、交通模型、环境模型、作战模型、社会模型、经济模型、医学模型、机械模型等。
按照建立模型的数学方法,可分为微分方程模型、几何模型、网络模型、运筹模型、随机模型等。
按照建模目的,可分为描述模型、分析模型、预测模型、决策模型、控制模型等。
按照对模型结构的了解程度,可分为白箱模型、灰箱模型、黑箱模型。白箱是指对所涉及问题的机理很清楚,黑箱是完全不了解问题的内部机理,灰箱则介于两者之间。
根据模型的表现形态还可分为:静态模型和动态模型、解析模型和数值模型、离散模型和连续模型、确定性模型和随机性模型。
数学模型和数学建模介绍
数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些规律建立起变量、参数之间的关系。求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题。数学建模最重要的特点在于它是一个接受实践检验、多次修改、逐渐完善的过程。

数学建模没有固定的格式和标准,也没有明确的方法,通常由明确问题、合理假设、搭建模型、求解模型、分析检验等五个步骤组成。

一个理想的数学模型,应尽可能满足以下两个条件:

模型的可靠性:在误差允许范围内,能正确反映客观实际;
模型的可解性:模型能够通过数学计算,得到可行解。
一个实际问题往往很复杂的,影响因素也有很多,要解决实际问题,就要将实际问题抽象简化、合理假设,确定变量和参数,建立合适的数学模型,并求解。模型的可靠性和可解性通常互相矛盾,一般总是在模型可解性的前提下力争较满意的可靠性。

⑥ 有哪些数学模型类型

用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。静态和动态模型。静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。

分布参数和集中参数模型。分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。连续时间和离散时间模型。模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。随机性和确定性模型:随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。

⑦ 什么是数学模型

数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

数学模型所表达的内容可以是定量的,也可以是定性的,但必须以定量的方式体现出来。因此,数学模型法的操作方式偏向于定量形式。

建立数学模型的要求:

1、真实完整。

1)真实的、系统的、完整的反映客观现象;

2)必须具有代表性;

3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因;

4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。

2、简明实用。在建模过程中,要把本质的东西及其关系反映进去,把非本质的、对反映客观真实程度影响不大的东西去掉,使模型在保证一定精确度的条件下,尽可能的简单和可操作,数据易于采集。

3、适应变化。随着有关条件的变化和人们认识的发展,通过相关变量及参数的调整,能很好的适应新情况。

数学模型的分类

1、 精确型:内涵和外延非常分明,可以用精确数学表达。

2、 模糊型:内涵和外延不是很清晰,要用模糊数学来描述。

数学模型的基本原则

1、简化原则

现实世界的原型都是具有多因素、多变量、多层次的比较复杂的系统,对原型进行一定的简化即抓住主要矛盾,数学模型应比原型简化,数学模型自身也应是“最简单”的。

2、可推导原则

由数学模型的研究可以推导出一些确定的结果,如果建立的数学模型在数学上是不可推导的,得不到确定的可以应用于原型的结果,这个数学模型就是无意义的。

3、反映性原则

数学模型实际上是人对现实世界的一种反映形式,因此数学模型和现实世界的原型就应有一定的“相似性”,抓住与原型相似的数学表达式或数学理论就是建立数学模型的关键性技巧。

⑧ 数学模型的分类有哪些

优化模型、微分方程模型、稳定性分析模型、代数模型、图论模型、动态规划模型、随机模型、决策与对策模型

⑨ 数学模型有哪些

1、生物学数学模型

2、医学数学模型

3、地质学数学模型

4、气象学数学模型

5、经济学数学模型

6、社会学数学模型

7、物理学数学模型

8、化学数学模型

9、天文学数学模型

10、工程学数学模型

11、管理学数学模型

(9)数学模型是怎么分类扩展阅读:

数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。

数学模型这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。

因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

阅读全文

与数学模型是怎么分类相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:741
乙酸乙酯化学式怎么算 浏览:1407
沈阳初中的数学是什么版本的 浏览:1354
华为手机家人共享如何查看地理位置 浏览:1046
一氧化碳还原氧化铝化学方程式怎么配平 浏览:888
数学c什么意思是什么意思是什么 浏览:1412
中考初中地理如何补 浏览:1302
360浏览器历史在哪里下载迅雷下载 浏览:704
数学奥数卡怎么办 浏览:1391
如何回答地理是什么 浏览:1027
win7如何删除电脑文件浏览历史 浏览:1059
大学物理实验干什么用的到 浏览:1488
二年级上册数学框框怎么填 浏览:1702
西安瑞禧生物科技有限公司怎么样 浏览:982
武大的分析化学怎么样 浏览:1251
ige电化学发光偏高怎么办 浏览:1340
学而思初中英语和语文怎么样 浏览:1655
下列哪个水飞蓟素化学结构 浏览:1426
化学理学哪些专业好 浏览:1489
数学中的棱的意思是什么 浏览:1061