㈠ 北师大版初一数学知识点归纳
学习知识要善于思考,思考,再思考。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。
初一下册数学复习知识点
概念知识
1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形
叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)
北师大版初一下册数学知识点 总结
相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角。
对顶角相等。
两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的.垂线,它们的交点叫做垂足。
平行线及其判定
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的性质
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
平移
向左平移a个单位长度,可以得到对应点(x-a,y)
向上平移b个单位长度,可以得到对应点(x,y+b)
向下平移b个单位长度,可以得到对应点(x,y-b)
初一数学 复习方法
初一数学主要知识点:
代数初步知识
1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。
2. 几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;
(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;
(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .
有理数
凡能写成q/p(p,q为整数且p≠0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0既不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。
整式的加减
单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
多项式:几个单项式的和叫多项式.
多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
北师大版初一数学知识点归纳相关 文章 :
★ 北师大版初一下册数学知识点复习总结
★ 北师版初一数学期末知识点总结
★ 北师大版初一数学上册知识点
★ 北师大版七年级数学上册知识点
★ 一年级数学北师版知识点
★ 北师大版初中数学知识点提纲
★ 七年级数学上册知识点北师大版
★ 北师大初中数学知识总结
★ 北师大初一数学知识点总结
★ 七年级数学上册知识点总结北师大
㈡ 初中数学(北师大版)全部知识点,重要知识点要标上重要,内容必须通俗易懂,要有自己总结出来的方法
初中数学合集网络网盘下载
链接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ
简介:初中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。
㈢ 数轴导入最好的例子
数轴导入最好的例子:
很久以前,在一个地方有三个部落,它们分别是“正数部落”、“负数部落”和“零”。正数部落和负数部落为了在“数轴大陆”上争夺地盘常常短兵相接。
可负数是屡战屡败:负数怎么可能比正数大呢? 负数部落的首领“-1”开始焦虑:长期这样下去,数轴大陆就会被正数独占啦!“-1”首领于是拜访了隐居深山的“绝对值”,把身怀绝技的绝对值请到自己的部落中。
又到了正负数部落交锋的时候,。这一次正数部落想索性将负数部落赶出数轴大陆,于是派出了部落的得力大将“+2000”。负数部落派出的则是“虾兵”“-3000”。
见对方来敌如此弱小,“+2000”不禁哈哈大笑。正当他准备前去轻松取敌时,绝对值出马了,只看那弱小的“-3000”顿时变成了威猛的“+3000”。还没等正数部落回过神来,“+2000”已被打得晕头转向,落荒而逃。
连绵的战火让数轴大陆不得安宁,让“0”再也不愿袖手旁观了。当正负数部落又一次交战时,“0”也上阵了。
信心百倍的负数部落这一次还是把希望寄托在神奇的绝对值身上,可是由于“0”有一种特殊的能力,每当绝对值想将负数变成相应的正数时,“0”总能将符 号“-”拉到绝对值的外面,所以得数还为负数。
由于负号在绝对值的外面,负数不能通过绝对值“变身”,也就失去了战胜正数的绝技。 由于“0”的参与,正负数部落终于明白谁也无法独占数轴大陆,战乱的局面也终于结束了。
正数和负数各自守卫着属于自己的领地。为了感谢零,正负数将零放在它们的正中间。这样一来,零也就成了正负数的分界线。
㈣ 北师大版初一(七年级)上册数学行程问题主要知识点
行程问题主要知识点
1、时间、路程、速度存在着重要的等量关系:时间×路程=速度,这是行程问题中的基本关系式,由此变形还可得到:速度=路程÷时间,时间=路程÷速度,同时,路程一定时,时间与速度成反比,时间(或速度)一定时,路程与速度(或时间)成正比;
2、行程问题有三种常见的题型
相遇问题、追及问题、航行问题,三种类型都有一般公式,这些必须牢记!
(1)、相遇问题:相遇时间×速度和=路程和
(2)、追及问题:追及时间×速度差=被追及问题
(3)、航行问题:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
(4)、飞行问题:类比航行问题
(5)、环路问题:甲乙同时同地背向而行:甲路程—乙路程=环路一周的距离
甲乙同时同地同向而行:快者的路程—慢者的路程=环路一周的距离
㈤ 如何在数的认识中发挥数轴的作用
【案例背景】
北师大版数学第八册第一单元小数的认识和加减法是在三年级下册“元、角、分与小数”及“分数的初步认识”基础上进行的,包括“小数的意义”“测量活动”“比大小”等内容。“小数的意义”把小数的认识范围扩大,不仅元角分以元为单位可以用小数表示,生活中很多事情都可以用小数表示。通过对这些例子的讨论,使学生体会小数与现实生活的密切关系。然后,借助直观模型使学生体会到小数与十进分数之间的关系,并通过计数器介绍小数部分的数位名称及数位的相互关系,使学生进一步理解小数的意义。“测量活动”目的是使学生加深对小数的理解,并能进行简单的复名数与单名数之间的转化。“比大小”通过演讲比赛选手的得分情况,学习如何比较小数的大小。
【教学片断一】
课件展示教材第6面的第3题的第一幅图
师:拿出你手中的直尺,你看把这一厘米平均分成10份,你取了其中的7份,在什么位置,怎样用小数表示?
生1:可以找到,就是7毫米。
生2:也就是7/10,用小数表示是0.7,它们是相对应的,相等的。
师:你说的真好!那我们如果取10份,也就是10/10,也就是1㎝,那10个就0.1就是多少呢?
生3:10个0.1就是1。
师:那我们一起来看这根长1米的木尺,课件展示米尺。
把1米平均分成100份,其中1份是几厘米?1份就是几分之几米?用小数表示是多少?
生4:其中一份就是1㎝,就是1/100米,用小数表示就是0.01米。
师:其中的10份是几㎝?其中10份是几分之几米?是用小数表示是多少米?
生5:其中10份就是10㎝,是10/100米,用小数表示是0.1米。
师:那也就是说10个0.01是多少?在小数部分每相邻的两个数量单位之间的进率是多少?
生7:10个0.01是0.1.
生8:每相邻的两个数量单位之间的进率是10。
【教学片断二】
师:现在我们请两个男生来测量教室前门的高度,谁愿意?
生9:我们测量的门高2米4分米,
师:那我们怎样用小数来表示呢?是多少米呢? 教师展示皮尺。
生10:2米还是2米,4分米从皮尺上看占了一米的4/10,也就是0.4米,那它们合起来就是2.4米。
【教学反思】
1、巧用数轴帮助学生理解小数的意义及小数部分十进制计数法
在小数的认识这一内容中,教材的编排意图体现了让学生在熟悉的生活背景下学习小数。如元、角、分、体重、身高,但是认识小数是学生对数的认识的又一次扩展,对学生来说,小数所表示的意义与他们的生活经验还有一定的距离,所以我充分引导学生借助手中的直尺,这一比较熟悉的素材让学生来加深理解。
教师是学生思维的引导者。使学生初步感受小数与实际生活的紧密联系,以此促进学生学好数学知识的兴趣和信心。直尺、米尺在这里实际上就是一个拿在手中的数轴,上面有毫米、厘米、分米,正好帮助学生来理解1/10、1/100,满十进一,从而理解了小数的意义。
2、,巧用数轴帮助学生在测量活动中体会小数在日常生活中的应用。
由于学生测量生活经验少,教材安排了教室内的实际测量活动情景,我们在教学时,可以利用米尺、皮尺,帮助学生利用数轴来理解小数的意义,让学生讨论这些长度用“米”怎样表示,在讨论几分米或几厘米写成米作单位时,可以先写成分母是10或100的分数,再写成小数。当测量到门高2米4分米,这时让学生观察米尺、皮尺,体会2米4分米的含义及用米作单位的含义,即2米4分米=2.4分米。这个难点,就在米尺这个形象的数轴的帮助下,轻松突破了。在课外我还安排学生回家用直尺和父母一起量电视屏、量凳子面的长、宽、量杂志的长、宽,又进一步巩固了小数的知识,加深了学生对数学的认识。
3、巧用数轴让学生直观的比较小数的大小。
在教材第10面第一题中,充分让学生动手找9.8的位置,让学生说9.8和10.1的含义,这样就比较直观的让学生理解了9.8< 10.1的道理。从而体会到数轴右边的数始终大于左边的数。
㈥ 2012北师大版七年级数学下册的每一章详细知识点总结。(要有像大括号的)
北七下知识要点分章梳理
第一章:整式的运算
一、单项式
1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简。
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
五、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an
的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
4、此法则也可以逆用,即:am+n = am﹒an。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
六、幂的乘方
1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
3、此法则也可以逆用,即:amn =(am)n=(an)m。
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。
3、此法则也可以逆用,即:anbn =(ab)n。 八、三种“幂的运算法则”异同点 1、共同点:
(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多式)。
(3)对于含有3个或3个以上的运算,法则仍然成立
2、不同点:
(1)同底数幂相乘是指数相加。
(2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。
九、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n
(a≠0)。
2、此法则也可以逆用,即:am-n = am÷an
(a≠0)。 十、零指数幂
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0
=1(a≠0)。 十一、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:1(0)pp
a
aa
注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。 十二、整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。 2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。 5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。 (二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。 2、运算时注意积的符号,多项式的每一项都包括它前面的符号。 3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。 (三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多
项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式
简化运算:(x+a)(x+b)=x2
+(a+b)x+ab。 十三、平方差公式
1、(a+b)(a-b)=a2-b2
,即:两数和与这两数差的积,等于它们的平方之差。 2、平方差公式中的a、b可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a2-b2
=(a+b)(a-b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
(a+b)•(a-b)的形式,然后看a2与b2
是否容易计算。 十四、完全平方公式
1、222222
()2,()2,abaabbabaabb即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。 2、公式中的a,b可以是单项式,也可以是多项式。 3、掌握理解完全平方公式的变形公式:
(1)222222
12
()2()2[()()]ababababababab (2)22
()()4ababab
(3)22
14[()()]ababab 4、完全平方式:我们把形如:2222
2,2,aabbaabb的二次三项式称作完全平方式。
5、当计算较大数的平方时,利用完全平方公式可以简化数的运算。
6、完全平方公式可以逆用,即:222222
2(),2().aabbabaabbab 十五、整式的除法
(一)单项式除以单项式的法则
1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。 2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。 (二)多项式除以单项式的法则
1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。用字母表示为:().abcmambmcm 2、多项式除以单项式,注意多项式各项都包括前面的符号
2
即(ab)n=anbn
。
3、此法则也可以逆用,即:anbn =(ab)n
。 八、三种“幂的运算法则”异同点 1、共同点:
(1)法则中的底数不变,只对指数做运算。
(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。
(3)对于含有3个或3个以上的运算,法则仍然成立。 2、不同点:
(1)同底数幂相乘是指数相加。 (2)幂的乘方是指数相乘。
(3)积的乘方是每个因式分别乘方,再将结果相乘。 九、同底数幂的除法
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n
(a≠0)。
2、此法则也可以逆用,即:am-n = am÷an
(a≠0)。 十、零指数幂
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0
=1(a≠0)。 十一、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:1(0)pp
a
aa
注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。 十二、整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。 2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。 5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。 (二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。 2、运算时注意积的符号,多项式的每一项都包括它前面的符号。 3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。 (三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多
项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。
4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式
简化运算:(x+a)(x+b)=x2
+(a+b)x+ab。 十三、平方差公式
1、(a+b)(a-b)=a2-b2
,即:两数和与这两数差的积,等于它们的平方之差。 2、平方差公式中的a、b可以是单项式,也可以是多项式。
3、平方差公式可以逆用,即:a2-b2
=(a+b)(a-b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
(a+b)•(a-b)的形式,然后看a2与b2
是否容易计算。 十四、完全平方公式
1、222222
()2,()2,abaabbabaabb即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。 2、公式中的a,b可以是单项式,也可以是多项式。 3、掌握理解完全平方公式的变形公式:
(1)222222
12
()2()2[()()]ababababababab (2)22
()()4ababab
(3)22
14[()()]ababab 4、完全平方式:我们把形如:2222
2,2,aabbaabb的二次三项式称作完全平方式。
5、当计算较大数的平方时,利用完全平方公式可以简化数的运算。
6、完全平方公式可以逆用,即:222222
2(),2().aabbabaabbab 十五、整式的除法
(一)单项式除以单项式的法则
1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。 2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。 (二)多项式除以单项式的法则
1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。用字母表示为:().abcmambmcm 2、多项式除以单项式,注意多项式各项都包括前面的符号
㈦ 北师大版七年级数学上册知识点
北师大版初一数学定理知识点汇总[七年级上册]
第一章 丰富的图形世界
¤1.
¤2.
¤3. 球体:由球面围成的(球面是曲面)
¤4. 几何图形是由点、线、面构成的。
①几何体与外界的接触面或我们能看到的外表就是几何体的表面。几何的表面有平面和曲面;
②面与面相交得到线;
③线与线相交得到点。
※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱。
※6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。
¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。
¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……
¤9. 长方体和正方体都是四棱柱。
¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。
※12. 设一个多边形的边数为n(n≥3,且n为整数),从一个顶点出发的对角线有(n-3)条;可以把n边形成(n-2)个三角形;这个n边形共有 条对角线。
◎13. 圆上两点之间的部分叫做弧,弧是一条曲线。
◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。
¤15. 凸多边形和凹多边形都属于多边形。有弧或不封闭图形都不是多边形。
第二章 有理数及其运算
※
※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
※任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)
※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)
※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
¤数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。
※绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。
※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
0
-1
-2
-3
1
2
3
越来越大
或
※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;
互为相反数的两数(除0外)的绝对值相等;
任何数的绝对值总是非负数,即|a|≥0
※比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:
①先求出两个数负数的绝对值;
②比较两个绝对值的大小;
③根据“两个负数,绝对值大的反而小”做出正确的判断。
※绝对值的性质:
①对任何有理数a,都有|a|≥0
②若|a|=0,则|a|=0,反之亦然
③若|a|=b,则a=±b
④对任何有理数a,都有|a|=|-a|
※有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
※加法的交换律、结合律在有理数运算中同样适用。
¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;
②符号相同的数,可以先相加;
③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。
※有理数减法法则: 减去一个数,等于加上这个数的相反数。
¤有理数减法运算时注意两“变”:①改变运算符号;
②改变减数的性质符号(变为相反数)
有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
¤有理数的加减法混合运算的步骤:
①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;
②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)
※有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
※如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 …等)
※乘法的交换律、结合律、分配律在有理数运算中同样适用。
¤有理数乘法运算步骤:①先确定积的符号;
②求出各因数的绝对值的积。
¤乘积为1的两个有理数互为倒数。注意:
①零没有倒数
②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。0不可作为除数,否则无意义。
指数
底数
幂
※有理数的乘方
※注意:①一个数可以看作是本身的一次方,如5=51;
②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
※乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④1的任何次幂都得1,0的任何次幂都得0;
⑤-1的偶次幂得1;-1的奇次幂得-1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
※有理数混合运算法则:①先算乘方,再算乘除,最后算加减。
②如果有括号,先算括号里面的。
第三章 字母表示数
※代数式的概念:
用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如 应写作 ;
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作 ;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如 平方米
※代数式的系数:
代数式中的数字中的数字因数叫做代数式的系数。如3x,4y的系数分别为3,4。
注意:①单个字母的系数是1,如a的系数是1;
②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是1
※代数式的项:
代数式 表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项
注意:在交待某一项时,应与前面的符号一起交待。
※同类项:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可;
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项。
※合差同类项:
把代数式中的同类项合并成一项,叫做合并同类项。
①合并同类项的理论根据是逆用乘法分配律;
②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
注意:
①如果两个同类项的系数互为相反数,合并同类项后结果为0;
②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;
③只要不再有同类项,就是最后结果,结果还是代数式。
※根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。
※根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。
※注意:
①去括号时,要连同括号前面的符号一起去掉;
②去括号时,首先要弄清楚括号前是“+”号还是“-”号;
③改变符号时,各项都变号;不改变符号时,各项都不变号。
第四章 平面图形及位置关系
一. 线段、射线、直线
※1. 正确理解直线、射线、线段的概念以及它们的区别:
名称
图形
表示方法
端点
长度
直线
直线AB(或BA)
直线l
无端点
无法度量
射线
射线OM
1个
无法度量
线段
线段AB(或BA)
线段l
2个
可度量长度
※2. 直线公理:经过两点有且只有一条直线.
b
鹏翔教图2
A
O
B
鹏翔教图1
二.比较线段的长短
※1. 线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离.
※2. 比较线段长短的两种方法:
①圆规截取比较法;
②刻度尺度量比较法.
β
鹏翔教图4
※3. 用刻度尺可以画出线段的中点,线段的和、差、倍、分;
1
鹏翔教图3
用圆规可以画出线段的和、差、倍.
三.角的度量与表示
※1. 角:有公共端点的两条射线组成的图形叫做角;
这个公共端点叫做角的顶点;
平角
鹏翔教图6
终边
始边
鹏翔教图5
这两条射线叫做角的边.
※2. 角的表示法:角的符号为“∠”
①用三个字母表示,如图1所示∠AOB
②用一个字母表示,如图2所示∠b
③用一个数字表示,如图3所示∠1
鹏翔教图8
C
A
B
O
④用希腊字母表示,如图4所示∠β
周角
鹏翔教图7
※经过两点有且只有一条直线。
※两点之间的所有连线中,线段最短。
※两点之间线段的长度,叫做这两点之间的距离。
1º=60’ 1’=60”
※角也可以看成是由一条射线绕着它的端点旋转而成的。如图5所示:
※一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。如图6所示:
※终边继续旋转,当它又和始边重合时,所成的角叫做周角。如图7所示:
※从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
※经过直线外一点,有且只有一条直线与这条直线平行。
※如果两条直线都与第三条直线平行,那么这两条直线互相平行。
※互相垂直的两条直线的交点叫做垂足。
※平面内,过一点有且只有一条直线与已知直线垂直。
※如图8所示,过点C作直线AB的垂线,垂足为O点,线段CO的长度叫做点C到直线AB的距离。
第五章 一元一次方程
※在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程。
※等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。
※等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式。
※解方程的步骤:解一元一次方程,一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等几个步骤,把一个一元一次方程“转化”成x=m的形式。
第六章 生活中的数据
※科学记数法:一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法。
※统计图的特点:
折线统计图:能够清晰地反映同一事物在不同时期的变化情况。
条形统计图:能够清晰地反映每个项目的具体数目及之间的大小关系。
扇形统计图:能够清晰地表示各部分在总体中所占的百分比及各部分之间的大小关系
统计图对统计的作用:
(1)可以清晰有效地表达数据。
(2)可以对数据进行分析。
(3)可以获得许多的信息。
(4)可以帮助人们作出合理的决策。
北师大版初一数学定理知识点汇总[七年级下册]
第一章 整式的运算
一. 整式
※1. 单项式
①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.
③一个单项式中,所有字母的指数和叫做这个单项式的次数.
※2.多项式
①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.
②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.
※3.整式单项式和多项式统称为整式.
二. 整式的加减
¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.
三. 同底数幂的乘法
※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);
⑤公式还可以逆用: (m、n均为正整数)
四.幂的乘方与积的乘方
※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.
※2. .
※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3
※4.底数有时形式不同,但可以化成相同。
※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。
※7.幂的乘方与积乘方法则均可逆向运用。
五. 同底数幂的除法
※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).
※2. 在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,
④运算要注意运算顺序.
六. 整式的乘法
※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
※2.单项式与多项式相乘
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:
①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
②运算时要注意积的符号,多项式的每一项都包括它前面的符号;
③在混合运算时,要注意运算顺序。
※3.多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
②多项式相乘的结果应注意合并同类项;
③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,
※即 。
¤其结构特征是:
①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;
②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
八.完全平方公式
¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,
¤即 ;
¤口决:首平方,尾平方,2倍乘积在中央;
¤2.结构特征:
①公式左边是二项式的完全平方;
②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。
九.整式的除法
¤1.单项式除法单项式
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
¤2.多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
第二章 平行线与相交线
一.台球桌面上的角
※1.互为余角和互为补角的有关概念与性质
如果两个角的和为90°(或直角),那么这两个角互为余角;
如果两个角的和为180°(或平角),那么这两个角互为补角;
注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
它们的主要性质:同角或等角的余角相等;
同角或等角的补角相等。
二.探索直线平行的条件
※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:
①同位角相等,两直线平行;
②内错角相等,两直线平行;
③同旁内角互补,两直线平行。
三.平行线的特征
※平行线的特征即平行线的性质定理,共有三条:
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补。
四.用尺规作线段和角
※1.关于尺规作图
尺规作图是指只用圆规和没有刻度的直尺来作图。
※2.关于尺规的功能
直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
第三章生活中的数据
※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。
¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
¤3.统计工作包括:
①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。
第四章 概率
¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。
※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。
※3.了解必然事件和不可能事件发生的概率。
必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1
※4.了解几何概率这类问题的计算方法
事件发生概率=
第五章 三角形
一.认识三角形
1.关于三角形的概念及其按角的分类
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
这里要注意两点:
①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;
②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
2.关于三角形三条边的关系
根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。
对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。
设三角形三边的长分别为a、b、c则:
①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;
②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。
3.关于三角形的内角和
三角形三个内角的和为180°
①直角三角形的两个锐角互余;
②一个三角形中至多有一个直角或一个钝角;
③一个三角中至少有两个内角是锐角。
4.关于三角形的中线、高和中线
①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;
②任意一个三角形都有三条角平分线,三条中线和三条高;
③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
二.图形的全等
¤能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。
四.全等三角形
¤1.关于全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角
所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。
※2.全等三角形的对应边相等,对应角相等。
¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。
五.探三角形全等的条件
※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”
※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”
※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”
※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”
六.作三角形
1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。
2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。
3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。
八.探索直三角形全等的条件
※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。
※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。
直角三角形的其他判定方法可以归纳如下:
①两条直角边对应相等的两个直角三角形全等;
②有一个锐角和一条边对应相等的两个直角三角形全等。
③三条边对应相等的两个直角三角形全等。
第七章 生活中的轴对称
※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
※2.角平分线上的点到角两边距离相等。
※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。
※4.角、线段和等腰三角形是轴对称图形。
※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
※6.轴对称图形上对应点所连的线段被对称轴垂直平分。
※7.轴对称图形上对应线段相等、对应角相等。
(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)
㈧ 北师大版七年级上册数学的复习提纲
七年级上册】 数学复习提纲
第一章 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
第四章 数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。