导航:首页 > 数字科学 > 鸡兔同笼蕴含什么数学思想

鸡兔同笼蕴含什么数学思想

发布时间:2022-09-23 07:45:34

A. 鸡兔同笼和数学的关系

鸡兔同笼,是中国古代着名典型趣题之一,记载于《孙子算经》之中
鸡兔同笼是中国古代的数学名题之一。 [1] 大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:
今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
这四句话的意思是:
有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?
这一问题的本质是一种二次方程。如果教学方法得当,可以让小学生初步地理解未知数和方程等概念,并锻炼从应用问题中抽象出数的能力。一般在小学四到六年级时,配合一元一次方程等内容教授。 [2]
同一本书中还有一道变题:
今有兽,六首四足;禽,四首二足,上有七十六首,下有四十六足。问:禽、兽各几何?答曰:八兽、七禽。
题设条件包括了不同数量的头和不同数量的足。
古法
《孙子算经》的作者为本题提出了两种解法:
术曰:上置三十五头,下置九十四足。半其足,得四十七,以少减多,再命之,上三除下四,上五除下七,下有一除上三,下有二除上五,即得。
又术曰:上置头,下置足,半其足,以头除足,以足除头,即得。
所谓的“上置”,“下置”指的是将数字按照上下两行摆在筹算盘上。在算筹盘第一行摆上数字三十五,第二行摆上数字九十四,将脚数除以二,此时第一行是三十五,第二行是四十七。用较小的头数减去较多的半脚数,四十减去三十(上三除下四),七减去五(上五除下七)。此时下行是十二,三十五减十二(下一除上三,下二除上五)得二十三。此时第一行剩下的算筹就是鸡的数目,第二行的算筹就是兔的数目。
另一种更简单的描述方法是:在第一行摆好三十五,第二行摆好九十四,将脚数除以2,用头数去减半脚数,用剩下的数(我们现在知道这是兔数)减去头数。这样第一行剩下的是鸡数,第二行剩下兔数。
至于头多于一个的“禽兽问题”,“孙子”给出的解法如下:
术曰:倍足以减首,余半之,即兽;以四乘兽,减足,余半之,即禽。
将脚数乘以两倍(此时禽脚与禽头的系数恰好相同),头数减去两倍脚数,除以二,得到兽的只数(八只),兽的只数乘以四(求出兽的脚数),总脚数减去兽的脚数再除以二,得到禽的脚数。
如果对照下面的二元方程就会发现,古法相当于是只在操作方程等号的右半边,并没有详细说明操作的系数代表什么。于是也只有“心开者”才能触之即悟了。

B. 鸡兔同笼问题的本质是什么

鸡兔同笼问题本质是“假设”这个数学解题的思想和方法。
在解答这类问题时,都是先假设在某条件下出现的情况,再由由此产生的偏差特点解决问题。

C. 鸡兔同笼的算数解法体现了什么数学思想

应该是转化思想
完全不知道还有数学思想分类的……
分类参见:http://ke..com/view/902835.htm
这种数学思想分类到底依据是什么?谁规定的?具有什么权威性

D. 鸡兔同笼在数学里什么意思

目录

基本概述

常用思路

中国古代

公式说明

公式1

公式2

公式3

公式4

公式5

公式6

公式7 

抬腿法

方法一

方法二

答案详解

详细解法

方程的解法

一元一次方程

二元一次方程

特殊算法

例题介绍 

鸡兔同笼

鸡兔同笼,是我国古代着名趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。

许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。因此很有必要学会它的解法和思路。通常是假设法比较简单易懂一点。

中文名称:鸡兔同笼

类别:古代着名算术题

解题方法:极端法,假设法,方程法

领域:数学

基本概述

鸡兔同笼是中国古代着名趣题之一。大约在1500年前 ,《孙子算经》中就记鸡兔同笼载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡和兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中各有几只鸡和兔。                    

兔:94÷2-35 =12                                                                            

鸡:35-12=23  

E. 鸡兔同笼数学建模及算法设计是什么

这是一节数学课,教案设计如下:

“鸡兔同笼”问题出现在五年级上册,它是我国古代数学名着《孙子算经》中的记载的一道题。原题是:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”根据这道数学题,编者化“难”为“简”。

把大一些的数字化成小一些的数字,作为第一道例题出现在教材中,即鸡兔同笼,有9个头,26条腿,鸡、兔各有几只?在解决了这个问题之后,教材出示了《孙子算经》中的问题,这样由简入繁,符合学生的认知规律。

“鸡兔同笼”的解题方法很多,其中也渗透着很多的数学思想方法。比如教材中提供的列表的方法就渗透着列举和猜想的思想方法;画图的方法渗透着假设的数学思想方法。由列举和画图的解题过程可以归纳出解决此类问题的数学模型,同时渗透了数学的模型思想;还可以运用方程来解决这类问题,则渗透着代数的思想方法。

在课堂中,我重点和学生讨论了列表的方法。在教学中把这些数学思想方法联系起来看,结合起来用,建立数学模型。让学生在解决问题的过程中体会建模的过程。

一、出示问题,明确题意。

课堂上,我先出示《孙子算经》中的“鸡兔同笼”问题,引导学生理解题意,明确题目的意思。而后,组织学生讨论如何解决这个问题.在讨论交流中,明确解决比较复杂的问题的一般路径:可以先从简单问题入手,寻找规律,再解决较复杂的问题。

接着,我出示了本节课的第一道例题“鸡兔同笼,有9个头,26条腿。鸡兔各有几只?”在数量上明显比原先小了很多,解决起来自然也就容易一些。

从而让我学生感觉到:在解决数字比较大的问题的时候,就可以把数字变小,化繁为简,解决起来就会容易很多。与此同时,转化的思想便开始萌芽。

二、独立思考,小组交流。

面对这个问题,我让学生思考。猜测一下,可以用什么办法来解决。学生会根据已有的租车问题的经验想到列表法,或根据学过的用方程来解决这个问题,或运用假设的方法来解决这个问题。有了方法,我便给学生几分钟独立思考的时间。

让他们理清解决问题的思路,再小组交流。我觉得,小组交流建立在学习小组的每个成员独立思考的基础上,这样的交流才是有效的。

三、全班交流,建立模型。

小组成员交流完毕后,我让学生静下来,再交流的基础上整理好自己的思路,并练习讲一讲。这样可以给学生充分的准备,才能在全班交流中产生高效的结果。

接着学生来汇报自己的想法,在汇报中,学生分别采用了不同的方法。我们共同归纳,给这些方法分别起了名字:列表法,代数法,假设法,画图法,抬脚法。

方法很多,但每一种方法中都蕴含着一个规律——当鸡的只数每减少1只,兔的只数每增加1只,脚的只数就会增加2只。由此规律,学生不难总结出一个数学模型,就是鸡的只数=(头的总数×4-脚的总只数)÷(4-2)。整个建模的过程,学生都在参与着,在参与中渐渐学会这种数学思想。

F. 如何在鸡兔同笼问题中渗透数学思想方法

一、解决“鸡兔同笼”问题策略中蕴涵的数学思想方法
数学思想是对数学知识和方法的本质及规律的理性认识,数学方法则是数学思想的具体表现形式,数学思想和数学方法合在一起,称为数学思想方法。解决问题的策略是以一定的数学思想方法为指导,在特定问题情境中,为实现教学目标而制定并在实施过程中不断调适、优化,以使问题得以有效解决的最佳系统决策与设计。在解决“鸡兔同笼”问题的过程中所使用的不同的解决问题的策略背后,一定隐含了相应的数学思想方法。笔者从中挖掘出的以下数学思想方法,对于教师提高对数学思想方法的认识能力和渗透意识都十分必要。
1.转化的思想方法
教材首先将《孙子算经》中的原题:“笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?”通过小精灵的提示:“我们可以先从简单的问题入手。”转化成了例题:“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?”同样是基本的“鸡兔同笼”问题,其中数量由大到小的变化,既为分析和解决问题提供了方便,也巧妙渗透了转化的数学思想方法。
转化是指将有待解决的问题,归结为一类已经解决或较易解决的问题中去,以求得问题的解决。教学中常常用到的化“难”为“易”, 化“繁”为“简”,化“生”为“熟”, 化“数”为“形”, 化“曲”为“直”, 化“圆”为“方”等都是数学学习中不可缺少的转化的思想方法。
2.猜想的思想方法
让学生先根据例题中的“从上面数,有8个头。”大胆猜测“鸡和兔各有几只?”再根据“从下面数,有26只脚。”来小心求证。在猜想不正确的情况下,学生逐步感受到“如果总脚数猜多了,就要多猜鸡少猜兔的只数;如果总脚数猜少了,要多猜兔少猜鸡的只数。”也正是在这样的过程中,学生参与探究的热情更高了,开展探究的勇气更大了,解决问题的思路更明了。
美籍匈牙利数学家、教育家、数学解题方法论的开拓者波利亚说,“数学事实首先是被猜想,然后是被证实。”数学猜想是人们在已有知识经验的基础上对问题进行直觉试探,从而形成某种假设的一种思维活动和思想方法。让学生先“估”后“数”、先“估”后“算”、先“估”后“量”、

G. 是什么,解决鸡兔同笼问题的思维策略和关键是啥

假设法解鸡兔同笼的四个步骤:
【引例】今有鸡兔同笼,头共40个,腿共112条,求鸡兔各几只?
第①步~假设
假设40个全是鸡,那么腿应该为:40×2=80条。
第②步~比较
实际腿共112条,差了:112-80=32条,也就是少了32条腿。
第③步~调整
为什么少了32条腿,因为还有兔子呢,把四条腿的兔子当成两条腿的鸡了,那就调整过来,一只鸡变成兔子补上了:4-2=2条腿,那么需要多少只鸡变成兔子才能对上腿数呢?
→ 32÷2=16只,说明兔子的数量就是16只。
综合列式为(112-40×2)÷(4-2)=16只。那么鸡的数量就是24只。

H. 鸡兔同笼问题说明什么

鸡兔同笼这个数学问题是中国古代对数学的研究和贡献,用差倍计算解决了“二元一次方程”数学应用题。合理的运用了假设和联想。

I. 鸡兔同笼的问题解答利用了数学中的什么思想方法

  1. 转化的思想方法

  2. 猜想的思想方法

  3. 列举的思想方法

  4. 画图的思想方法

  5. 假设的思想方法

  6. 假设的思想方法

  7. 代数的思想方法

  8. 抬脚的解题方法

求采纳!!!!

阅读全文

与鸡兔同笼蕴含什么数学思想相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:741
乙酸乙酯化学式怎么算 浏览:1407
沈阳初中的数学是什么版本的 浏览:1354
华为手机家人共享如何查看地理位置 浏览:1046
一氧化碳还原氧化铝化学方程式怎么配平 浏览:887
数学c什么意思是什么意思是什么 浏览:1412
中考初中地理如何补 浏览:1302
360浏览器历史在哪里下载迅雷下载 浏览:704
数学奥数卡怎么办 浏览:1389
如何回答地理是什么 浏览:1027
win7如何删除电脑文件浏览历史 浏览:1059
大学物理实验干什么用的到 浏览:1488
二年级上册数学框框怎么填 浏览:1702
西安瑞禧生物科技有限公司怎么样 浏览:980
武大的分析化学怎么样 浏览:1251
ige电化学发光偏高怎么办 浏览:1340
学而思初中英语和语文怎么样 浏览:1655
下列哪个水飞蓟素化学结构 浏览:1426
化学理学哪些专业好 浏览:1489
数学中的棱的意思是什么 浏览:1061