导航:首页 > 数字科学 > 数学建模中相关特征有哪些方法

数学建模中相关特征有哪些方法

发布时间:2022-09-23 14:58:02

① 数学建模的方法有哪些

  1. 预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);

  2. 归类判别:欧氏距离判别、fisher判别等 ;

  3. 图论:最短路径求法 ;

  4. 最优化:列方程组 用lindo 或 lingo软件解 ;

  5. 其他方法:层次分析法 马尔可夫链 主成分析法 等 。

建模常用算法,仅供参考:

  1. 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决 问题的算法,同时间=可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 。

  2. 数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数 据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具) 。

  3. 线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多 数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用Lindo、Lingo 软件实现) 。

  4. 图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算 法,涉及到图论的问题可以用这些方法解决,需要认真准备) 。

  5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算 法设计中比较常用的方法,很多场合可以用到竞赛中) 。

  6. 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些 问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助, 但是算法的实现比较困难,需慎重使用) 。

  7. 网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很 多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 。

  8. 一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替 积分等思想是非常重要的) 。

  9. 数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分 析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编 写库函数进行调用) 。

  10. 图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问 题,通常使用Matlab 进行处理)。

② 数学建模都要用到那些方法啊

随着科学技术的迅速发展,数学模型这个词汇越来越多地出现在现代人的生产、工作和社会活动中。电气工程师必须建立所要控制的生产过程的数学模型,用这个模型对控制装置作出相应的设计和计算,才能实现有效的过程控制;气象工作者为了得到准确的天气预报,一刻也离不开根据气象站、气象卫星汇集的气压、雨量、风速等资料建立的数学模型;生理医学家有了药物浓度在人体内随时间和空间变化的数学模型,就可以分析药物的疗效,有效地指导临床用药;厂长经理们要是能够根据产品的需求状况、生产条件和成本、贮存费用等信息,筹划出一个合理安排生产和销售的数学模型,一定可以获得更大的经济效益。对于广大的科学技术人员和应用数学工作者来说,建立数学模型是沟通摆在面前的实际问题与他们掌握的数学工具之间的一座必不可少的桥梁。

那么,什么是数学模型,又是如何建立起这些形形色色的数学模型的呢?就让我们走近数学模型看一看吧!

原型与模型

原型(Prototype):人们在现实世界里关心、研究或者生产、管理的实际对象。

模型(Model):为特定的目的,将原型的某一部分信息简缩、提炼而构造的原型替代物。

数学模型:对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

注意数学模型(Mathematical Model)与数学建模(Mathematical Modelling)之间的联系与区别。

建立数学模型的方法

一般说来建立数学模型可以分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型回到现实对象。建立数学模型没有固定的模式。一般这一过程可以如图所示的几个步骤:

数学模型的分类

基于不同的出发点可以有各种不同的分法:

按照模型的应用领域分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等。范畴更大一些则形成许多边缘学科如生物数学、医学数学、地质数学、数量经济学、数学社会学等。

按照建立模型的方法分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型等。

按照模型的表现特性又有几种分法:

确定行模型和随机性模型 取决于是否考虑随机因素的影响。近几年来随着数学的发展,又有所谓突变性模型和模糊性模型。

静态模型和动态模型 取决于是否考虑随机因数引起的变化。

离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散是连续的。

线性模型和连续模型 取决于模型的基本关系,如微分方程是否是的。

按照建模目的分。有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等。

按照对模型的了解程度分。有所谓白箱模型、灰箱模型、黑箱模型等。它们分别意

味着人们对原型的内在机理了解清楚、不太清楚和不清楚。

数学模型的作用

数学是研究现实世界中的数量关系和空间形式的科学。它的产生和许多重大发展都和现实世界的生产活动和其他相应的学科的需要密切相关的。一般的说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节。

分析 通常是指定量研究现实对象的某种现象,或定量描述某种特性。例如 研究不同种群的生物在同一自然环境下生存时,相互竞争和依存的现象;描述药物浓度在人体内的变化规律以分析药物的疗效。

预报 一般是根据对象的固有特性预测当时间或环境变化时对象的发展规律。人口预报、天气预报以及传染病蔓延高潮时刻的预报可以作为这方面的例子。

决策 其含义很广,譬如根据对象满足的规律作出使某个数量指标达到最优的决策。使经济效益最大的价格策略,使总费用最少的设备维修方案都是这类决策。

控制 一般是指根据对象的特征和某些指标给出尽可能满意的控制方案。例如化工生产过程中温度和流量的控制,利用红绿灯对交流进行控制等

数学建模(mathematical modelling)

数学建模是构造刻划客观事物原型的数学模型并用析究和解决实际问题的种方法。运用这种科学方法,建模者必须从实际问题出发,遵循“实践――认识――实践”的辨证唯物主义认识规律,紧紧围绕着建模的目的,运用观察力、想象力和逻辑思维,对问题进行抽象、简化,反复探索、逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模不仅仅是一种定量解决实际问题的科学方法,而且还是一种从无到有的创新活动过程。当代计算机的发展和广泛应用,使得数学模型的方法如虎添翼,加速了数学向各个学科的渗透,产生了众多的边缘学科。当今几乎所有重要的学科,只要在其名称前面或后面加上“数学”或“计算”二字,就成了现有的一种国际学术杂志名称。这表明各学科正在利用数学方法和数学成果来加速本学科的发展。就连计算机本身的产生和进步也是强烈地依赖于数学科学的发展,而计算机软件技术说到底也是数学技术。

引用绝对吓人的文字

③ 数学建模的方法有哪些

这是网上来的,写得还不错:
要重点突破:
1 预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);
2 归类判别:欧氏距离判别、fisher判别等 ;
3 图论:最短路径求法 ;
4 最优化:列方程组 用lindo 或 lingo软件解 ;
5 其他方法:层次分析法 马尔可夫链 主成分析法 等 ;
6 用到软件:matlab lindo (lingo) excel ;
7 比赛前写几篇数模论文。

这是每年参赛的赛提以及获奖作品的解法,你自己估量着吧……

赛题 解法
93A非线性交调的频率设计 拟合、规划
93B足球队排名 图论、层次分析、整数规划
94A逢山开路 图论、插值、动态规划
94B锁具装箱问题 图论、组合数学
95A飞行管理问题 非线性规划、线性规划
95B天车与冶炼炉的作业调度 动态规划、排队论、图论
96A最优捕鱼策略 微分方程、优化
96B节水洗衣机 非线性规划
97A零件的参数设计 非线性规划
97B截断切割的最优排列 随机模拟、图论
98A一类投资组合问题 多目标优化、非线性规划
98B灾情巡视的最佳路线 图论、组合优化
99A自动化车床管理 随机优化、计算机模拟
99B钻井布局 0-1规划、图论
00A DNA序列分类 模式识别、Fisher判别、人工神经网络
00B钢管订购和运输 组合优化、运输问题
01A血管三维重建 曲线拟合、曲面重建
01B 工交车调度问题 多目标规划
02A车灯线光源的优化 非线性规划
02B彩票问题 单目标决策
03A SARS的传播 微分方程、差分方程
03B 露天矿生产的车辆安排 整数规划、运输问题
04A奥运会临时超市网点设计 统计分析、数据处理、优化
04B电力市场的输电阻塞管理 数据拟合、优化
05A长江水质的评价和预测 预测评价、数据处理
05B DVD在线租赁 随机规划、整数规划

算法的设计的好坏将直接影响运算速度的快慢,建议多用数学软件(
Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),这里提供十种数学
建模常用算法,仅供参考:
1、 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决
问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必
用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数
据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多
数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通
常使用Lindo、Lingo 软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算
法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算
法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些
问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,
但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很
多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种
暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计
算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替
积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分
析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编
写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文
中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问
题,通常使用Matlab 进行处理)

④ 数学建模都有哪些方法

这些是以前在网上整理的:
要重点突破:
1 预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);
2 归类判别:欧氏距离判别、fisher判别等 ;
3 图论:最短路径求法 ;
4 最优化:列方程组 用lindo 或 lingo软件解 ;
5 其他方法:层次分析法 马尔可夫链 主成分析法 等 ;
6 用到软件:matlab lindo (lingo) excel ;
7 比赛前写几篇数模论文。

这是每年参赛的赛提以及获奖作品的解法,你自己估量着吧……

赛题 解法
93A非线性交调的频率设计 拟合、规划
93B足球队排名 图论、层次分析、整数规划
94A逢山开路 图论、插值、动态规划
94B锁具装箱问题 图论、组合数学
95A飞行管理问题 非线性规划、线性规划
95B天车与冶炼炉的作业调度 动态规划、排队论、图论
96A最优捕鱼策略 微分方程、优化
96B节水洗衣机 非线性规划
97A零件的参数设计 非线性规划
97B截断切割的最优排列 随机模拟、图论
98A一类投资组合问题 多目标优化、非线性规划
98B灾情巡视的最佳路线 图论、组合优化
99A自动化车床管理 随机优化、计算机模拟
99B钻井布局 0-1规划、图论
00A DNA序列分类 模式识别、Fisher判别、人工神经网络
00B钢管订购和运输 组合优化、运输问题
01A血管三维重建 曲线拟合、曲面重建
01B 工交车调度问题 多目标规划
02A车灯线光源的优化 非线性规划
02B彩票问题 单目标决策
03A SARS的传播 微分方程、差分方程
03B 露天矿生产的车辆安排 整数规划、运输问题
04A奥运会临时超市网点设计 统计分析、数据处理、优化
04B电力市场的输电阻塞管理 数据拟合、优化
05A长江水质的评价和预测 预测评价、数据处理
05B DVD在线租赁 随机规划、整数规划

算法的设计的好坏将直接影响运算速度的快慢,建议多用数学软件(
Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),这里提供十种数学
建模常用算法,仅供参考:
1、 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决
问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必
用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数
据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多
数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通
常使用Lindo、Lingo 软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算
法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算
法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些
问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,
但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很
多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种
暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计
算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替
积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分
析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编
写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文
中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问
题,通常使用Matlab 进行处理)

⑤ 数学建模方法和步骤

数学建模的主要步骤:

第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建

模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以

高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应

尽量使问题线性化、均匀化。

第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间

的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老

人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱

大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工

具愈简单愈有价值。

第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,

特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计

算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作

出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差

分析,数据稳定性分析。

数学建模采用的主要方法有:

(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模

型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策

等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。

(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型

1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。

(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状

态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构


3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的

可能变化,人为地组成一个系统。

⑥ 数学建模中的分析方法有哪些

数学建模分析方法大体分为机理分析和测试分析两种。
机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明确的物理或现实意义。
测试分析:将研究的对象看做一个“黑箱”系统(意思是它的内部机理看不清楚),通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合最好的模型。
希望对你有帮助

⑦ 数学建模的步骤

数学建模的主要步骤:

第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。

第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建

模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以

高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应

尽量使问题线性化、均匀化。

第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间

的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老

人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱

大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工

具愈简单愈有价值。

第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,

特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计

算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。

第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作

出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差

分析,数据稳定性分析。

数学建模采用的主要方法有:

(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模

型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策

等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。

(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型

1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由

于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。

(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状

态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构


3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的

可能变化,人为地组成一个系统。
希望能解决您的问题。

⑧ 数学建模的方法有哪些

数学建模就同列方程一样

找出解决问题的方法,找出问题的规律(没有规律也叫规律)

然后根据计算机的特点,确定计算方法(计算机不像我们人类,不能直接判断问题的逻辑关系,我们只能利用计算机的一些特定语言来表达,使计算机能认识)。

课题的数学建模做好了,写计算机程序就方便多了。

判定程序的优劣,首先就从数学建模开始。

⑨ 数学建模主要有哪些分析方法

2常用的建模方法(I)初等数学法。主要用于一些静态、线性、确定性的模型。例如,席位分配问题,学生成绩的比较,一些简单的传染病静态模型。(2)数据分析法。从大量的观测数据中,利用统计方法建立数学模型,常见的有:回归分析法,时序分析法。(3)仿真和其他方法。主要有计算机模拟(是一种统计估计方法,等效于抽样试验,可以离散系统模拟和连续系统模拟),因子试验法(主要是在系统上做局部试验,根据试验结果进行不断分析修改,求得所需模型结构),人工现实法(基于对系统的了解和所要达到的目标,人为地组成一个系统)。(4)层次分析法。主要用于有关经济计划和管理、能源决策和分配、行为科学、军事科学、军事指挥、运输、农业、教育、人才、医疗、环境等领域,以便进行决策、评价、分析、预测等。该方法关键的一步是建立层次结构模型。

⑩ 选择三种数学建模方法,介绍其内容并说明其适用的问题类型,并举例

摘要 对于大家来说,建模是大家觉得比较难的内容。那么如何进行有效的建模呢?今天,沪江小编就为大家分享几种常用的数学建模方法,一起来看看吧!

阅读全文

与数学建模中相关特征有哪些方法相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:741
乙酸乙酯化学式怎么算 浏览:1407
沈阳初中的数学是什么版本的 浏览:1354
华为手机家人共享如何查看地理位置 浏览:1046
一氧化碳还原氧化铝化学方程式怎么配平 浏览:887
数学c什么意思是什么意思是什么 浏览:1412
中考初中地理如何补 浏览:1302
360浏览器历史在哪里下载迅雷下载 浏览:704
数学奥数卡怎么办 浏览:1389
如何回答地理是什么 浏览:1027
win7如何删除电脑文件浏览历史 浏览:1059
大学物理实验干什么用的到 浏览:1488
二年级上册数学框框怎么填 浏览:1702
西安瑞禧生物科技有限公司怎么样 浏览:980
武大的分析化学怎么样 浏览:1251
ige电化学发光偏高怎么办 浏览:1340
学而思初中英语和语文怎么样 浏览:1655
下列哪个水飞蓟素化学结构 浏览:1426
化学理学哪些专业好 浏览:1489
数学中的棱的意思是什么 浏览:1061