导航:首页 > 数字科学 > 高中数学的主线有哪些

高中数学的主线有哪些

发布时间:2022-09-23 21:02:41

‘壹’ 高中数学重点、难点有哪些

高中数学重点难点归纳总结——函数

高中数学重点难点归纳总结——数列与极限

高中数学重点难点归纳总结——解析几何

问题背景

本人是一名市重点高中数学教师,2019年高考数学班级平均分126分,其中更是有12位同学考上了985、211双一流学校,一本达线率100%

高中数学重难点正如题主所说的函数问题,函数问题贯穿整个高中数学内容,其解题方法跟思想更是与各类题型融会贯通,在这里就举一个例子。

就像这些宗谱卷里面经常遇到的第12题函数有几个零点我们都是用数形结合去转化问题,将原本的一个抽象函数转化为定图像于动图象之间交点的问题。

然后再去判断参数范围在哪一个区间里面变化才能够满足题意,那么就能够做到轻松求解。

谢谢大家,如果有疑问可以关注,私信我。也有很多图条上的学生经常在私信里问我题目,我都会逐一解答,谢谢大家支持。

‘贰’ 简述高中数学几何主线的内容

解析几何是高中数学的主干知识之一,其特点是用代数的方法研究、解决几何问题,重点是用“数形结合”的思想把几何问题转化为代数问题。解决简单的数学问题和实际问题,感悟平面解析几何中蕴含的数学思想。

‘叁’ 高中数学课程内容主线一般认为有哪些

函数,曲线,向量。我感觉就这些

‘肆’ 高中数学内容标准四条主线

函数、立体几何、解析几何、概率统计。

‘伍’ 高中数学六大主线

高中数学六大主线:

数学1:集合;函数概念与基本初等函数Ⅰ 。

数学2:立体几何初步(柱锥台);平面解析几何初步(直线与圆的方程) 。

数学3:算法初步;统计;概率 。

数学4:三角函数;平面向量;三角恒等变换 。

数学5:解三角形。

注意

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数。

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴。

‘陆’ 高中数学主要学习哪些内容

高中数学主要学习了向量,几何函数。
然后就是图形,不等式
还有一些其他的东西,主要就是为了锻炼人的思维。

‘柒’ 高中数学六大主线

高中数学的六大板块
数学1:集合;函数概念与基本初等函数Ⅰ
数学2:立体几何初步(柱锥台);平面解析几何初步(直线与圆的方程)
数学3:算法初步;统计;概率
数学4:三角函数;平面向量;三角恒等变换
数学5:解三角形
11.1正弦定理
11.2余弦定理
11.3正弦定理、余弦定理的应用

数列;不等式
选修系列1
1-1
第1章 常用逻辑用语
第2章 圆锥曲线与方程
2.1圆锥曲线
2.2椭圆
2.3双曲线
2.4抛物线
2.5圆锥曲线与方程

第3章 导数及其应用
3.1导数的概念
3.2导数的运算
3.3导数在研究函数中的应用
3.4导数在实际生活中的应用

1-2
第1章 统计案例
1.1假设检验
1.2独立性检验
1.3线性回归分析
1.4聚类分析

第2章 推理与证明
2.1合情推理与演绎推理
2.2直接证明与间接证明
2.3公理化思想

第3章 数系的扩充与复数的引入
3.1数系的扩充
3.2复数的四则运算
3.3复数的几何意义

第4章 框图
4.1流程图
5.2结构图

选修系列2

2-1
第1章 常用逻辑用语
1.1命题及其关系
1.2简单的逻辑连接词
1.3全称量词与存在量词

第2章 圆锥曲线与方程
2.1圆锥曲线
2.2椭圆
2.3双曲线
2.4抛物线
2.5圆锥曲线的统一定义
2.6曲线与方程

第3章 空间向量与立体几何
3.1空间向量及其运算
3.2空间向量的应用

2-2
第1章 导数及其应用
1.1导数的概念
1.2导数的运算
1.3导数在研究函数中的应用
1.4导数在实际生活中的应用
1.5定积分

第2章 推理与证明
2.1合情推理与演绎推理
2.2直接证明与间接证明
2.3数学归纳法
2.4公理化思想

第3章 数系的扩充与复数的引入
6.1数系的扩充
3.2复数的四则运算
3.3复数的几何意义

2-3
第1章 计数原理
1.1两个基本原理
1.2排列
1.3组合
1.4计数应用题
1.5二项式定理

第2章 概率
2.1随机变量及其概率分布
2.2超几何分布
2.3独立性
2.4二项分布
2.5离散型随机变量的均值与方差
2.6正态分布

第3章 统计案例
3.1假设检验
3.2独立性检验
3.3线性回归分析
4.4聚类分析
集合,函数,数列,平面向量,不等式,三角函数,直线和圆的方程,圆锥曲线方程,直线平面、简单几何体,排列组合二项式定理,线性规划,复数,概率与统计,极限,导数,统计

‘捌’ 高中数学每年高考的必考点,重点,难点分别是什么

主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:
1.函数
函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。
2.三角函数
三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。
3.立体几何
承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限
数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。
5.解析几何
直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

阅读全文

与高中数学的主线有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:741
乙酸乙酯化学式怎么算 浏览:1407
沈阳初中的数学是什么版本的 浏览:1354
华为手机家人共享如何查看地理位置 浏览:1046
一氧化碳还原氧化铝化学方程式怎么配平 浏览:887
数学c什么意思是什么意思是什么 浏览:1412
中考初中地理如何补 浏览:1302
360浏览器历史在哪里下载迅雷下载 浏览:704
数学奥数卡怎么办 浏览:1389
如何回答地理是什么 浏览:1027
win7如何删除电脑文件浏览历史 浏览:1059
大学物理实验干什么用的到 浏览:1488
二年级上册数学框框怎么填 浏览:1702
西安瑞禧生物科技有限公司怎么样 浏览:980
武大的分析化学怎么样 浏览:1251
ige电化学发光偏高怎么办 浏览:1340
学而思初中英语和语文怎么样 浏览:1655
下列哪个水飞蓟素化学结构 浏览:1426
化学理学哪些专业好 浏览:1489
数学中的棱的意思是什么 浏览:1061