㈠ 数学计算的规律有哪些
谈数学解题的规范
解题是深化知识、发展智力、提高能力的重要手段.规范的解题能够养成良好的学习习惯,提高思维水平.在学习过程中做一定量的练习题是必要的,但并非越多越好,题海战术只能加重学生的负担,弱化解题的作用.要克服题海战术,强化解题的作用,就必须加强解题的规范.
解题的规范包括审题规范、语言表达规范、答案规范及解题后的反思四个方面.
一、审题规范
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分.
(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示.
目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标.
(2)分析条件与目标的联系.每个数学问题都是由若干条件与目标组成的.
解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标.
(3)确定解题思路.一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁.用哪些联系解题,需要根据这些联系所遵循的数学原理确定.解题的实质就是分析这些联系与哪个数学原理相匹配.有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因.
二、语言叙述规范
语言(包括数学语言)叙述是表达解题程式的过程,是数学解题的重要环节.
因此,语言叙述必须规范.规范的语言叙述应步骤清楚、正确、完整、详略得当,言必有据.数学本身有一套规范的语言系统,切不可随意杜撰数学符号和数学术语,让人不知所云.
三、答案规范
答案规范是指答案准确、简洁、全面,既注意结果的验证、取舍,又要注意答案的完整.要做到答案规范,就必须审清题目的目标,按目标作答.
四、解题后的反思
解题后的反思是指解题后对审题过程和解题方法及解题所用知识的回顾节思考,只有这样,才能有效的深化对知识的理解,提高思维能力.
(1)有时多次受阻而后“灵感”突来.不论哪种情况,思维都有很强的直觉性,若在解题后及时重现一下这个思维过程,追溯“灵感”是怎样产生的,多次受阻的原因何在,总结审题过程中的思维技巧,这对发现审题过程中的错误,提高分析问题的能力都有重要作用.
(2)这些方法的熟练程度密切相关,学生在解题时总是用最先想到的方法,也是他们最熟悉的方法,因此,解题后反思一下有无其它解法,可使学生开拓思路,提高解题能力.
㈡ 数学有哪些运算定律,用字母表示出来
1、加法交换律:两个加数交换位置,和不变。这叫做加法交换律。
用字母表示:a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这叫做加法结合律。
用字母表示:(a+b)+c= a +( b+c)
3、乘法交换律:两个因数交换位置,积不变。这叫做乘法交换律。
用字母表示:a×b=b×a
4、乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律。
用字母表示:(a×b)×c= a×( b×c)
5、乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
用字母表示:(a+b)×c= a×c+b×c a×( b+c) =a×b+a×c
(a-b)×c= a×c-b×c a×( b-c) =a×b-a×c
(2)数学学了哪些运算扩展阅读
相关性质:
1、减法的性质:一个数连续减去两个数,可以减去这两个减数的和。
用字母表示:a-b-c= a -( b+c) a -( b+c) = a-b-c
2、一个数连续减去两个数,可以先减去第二个减数,再减去第一个减数。
用字母表示:a-b-c= a- c – b
3、除法的性质:一个数连续除以两个数,可以除以这两个除数的积。
用字母表示:a÷b÷c= a÷( b×c)a÷( b×c) = a÷b÷c
4、一个数连续除以两个数,可以先除以第二个除数,再除以第一个除数。
用字母表示:a÷b÷c= a÷c÷b
㈢ 小学阶段数学数的运算的内容有哪些
整数,小数,分数四则运算和三步以内的四则混合运算。
整数、小数、分数的简便计算。
整数、小数、分数间的混合运算。
一步计算、两步计算的方程。
分数、百分数、小数之间的互化。
重量、长度、面积、体积单位的化聚。
面积、体积计算。
小数的近似计算。
用万、亿作单位的改写。
大体是这么多。
㈣ 小学数学有哪些基础运算公式
每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数、3速度×时间=路程 路程÷速度=时间 路程÷时间=速度4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数8、因数×因数=积 积÷一个因数=另一个因数9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数10、分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.11、分数的乘法则:用分子的积做分子,用分母的积做分母.12、分数的除法则:除以一个数等于乘以这个数的倒数.
㈤ 小学数学计算方法有哪些
小学学的计算方法不外乎加减乘除
还有分数的运算,小数的运算和单位之间的互相运算等等
㈥ 数学所有的运算法则
四则运算:加法、减法、乘法、除法
乘法引申运算:幂运算、对数运算
除法引申运算:正弦、余弦、正切、余切、正割、余割
圆的定义:弧度制运算
所有一元一次方程、多元多次方程、平面几何、立体几何、解析几何都不会离开以上基本运算法则及其引申运算。
㈦ 数学运算的常用数学常识有哪些
废话不说,数学运算中的数学基本常识是重要的,也是备考过程中必须掌握的,否则你就无法应对考试的时间检验要求。掌握数学中的数字整除性、奇偶性、质合性、余数特征、尾数特征、特殊值。万能的方程法是万能的,但是不到“迫不得已”的时候千万不要使用,耗时的解决方法就意味着你会错过后面的题目,浪费更多的得分机会。
数字整除性就需要根据被除数除以除数的余数来判断结果,这需要记忆常用的数字整除特征。多记忆,多联系,就OK了。
判断数字个位上的数字:2和5,数字的个位数能被2整除意味着整个数能被2整除,同理数字的个位数能被5整除意味着整个数能被5整除;
判断数字后两位的数字:4和25,数字的后两位数能被4整除意味着整个数能被4整除,同理数字的后两位数能被25整除意味着整个数能被25整除;
判断数字后三位的数字:8和125,数字的后三位数能被8整除意味着整个数能被8整除,同理数字的后三位数能被125整除意味着整个数能被125整除;
判断数字各位上的数字之和:3和9,数字的各位数字之和能被3整除意味着整个数能被3整除,同理数字的各位数字之和能被9整除意味着整个数能被9整除。
奇偶性就非常简单,能被2整除的整数就是偶数,另外还有0也是偶数,反之则是奇数,运用奇偶性的知识点就运用在加减乘除运算中的特性,要记忆常用的特征,也要知道奇数往往会改变整个运算结果的奇偶性特征。
质合性的运用能颠覆解题运算速度,质数的值往往只能通过加减运算来得到,反之就要考虑乘除的运算可能性了。另外需要特别注意的是:1既不是质数也不是合数,2是所有质数中唯一的一个偶数,记忆20以内的质数也有利于解题速度,分别是2,3,5,7,11,13,17,19。
余数特征的运用往往运用在被除数分别除以一组除数得到的一组余数结果中,对应的除数和余数特征可以统一表示成“被除数”,比如:
一个数除以5余3,除以6余3,除以7余3,那么这个数可以表示成210N+3。
一个数除以5余3,除以6余2,除以7余1,那么这个数可以表示成210N+8。
一个数除以5余3,除以6余4,除以7余5,那么这个数可以表示成210N-2。
简单一句话就是同余加余,同和加和,同差减差,周期是最小公倍数值。
尾数特征运用在多次运算、高位数运算中,根据答案的位数互异特征,可以采用尾数判断的方法来选择答案,这个运用的数学运算往往是秒杀效果。
特殊值的运用效果跟尾数的情况类似,一些比较复杂的代数运算,往往借用特殊值的方法,定能快速准确得到答案,同样可以达到秒杀的境界。
㈧ 小学数学有哪些基础运算公式
计算公式小学数学基础运算公式,供大家参考。 1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数×因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 10、分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 11、分数的乘法则:用分子的积做分子,用分母的积做分母。 12、分数的除法则:除以一个数等于乘以这个数的倒数。
㈨ 从小学到大学数学中都学了哪些运算
从加减乘除运算到平方公式,再到排列组合公式等等。