㈠ 怎样手算开方
过最好的是记住根号2,根号3,根号5等一些数值的值
因为很多数值都可以分解成这些数的乘积形式
[解题过程]
述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除 256,所得的最大整数是 4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.
徒手开n次方根的方法:
原理:设被开方数为X,开n次方,设前一步的根的结果为a,现在要试根的下一位,设为b,
则有:(10*a+b)^n-(10*a)^n<=c(前一步的差与本段合成);且b取最大值
用纯文字描述比较困难,下面用实例说明:
我们求 2301781.9823406 的5次方根:
第1步:将被开方的数以小数点为中心,向两边每隔n位分段(下面用'表示);不足部分在两端用0补齐;
23'01781.98234'06000'00000'00000'..........
从高位段向低位段逐段做如下工作:
初值a=0,差c=23(最高段)
第2步:找b,条件:(10*a+b)^n-(10*a)^n<=c,即b^5<=23,且为最大值;显然b=1
差c=23-b^5=22,与下一段合成,
c=c*10^n+下一段=22*10^5+01781=2201781
第3步:a=1(计算机语言赋值语句写作a=10*a+b),找下一个b,
条件:(10*a+b)^n-(10*a)^n<=c,即:(10+b)^5-10^5<=2201781,
b取最大值8,差c=412213,与下一段合成,
c=c*10^5+下一段=412213*10^5+98234=41221398234
第4步:a=18,找下一个b,
条件:(10*a+b)^n-(10*a)^n<=c,即:(180+b)^5-180^5<=41221398234,
b取最大值7
说明:这里可使用近似公式估算b的值:
当10*a>>b时,(10*a+b)^n-(10*a)^n≈n*(10*a)^(n-1)*b,即:
b≈41221398234/n/(10*a)^(n-1)=41221398234/5/180^4≈7.85,取b=7
以下各步都更加可以使用此近似公式估算b之值
差c=1508808527;与下一段合成,
c=c*10^5+下一段=1508808527*10^5+06000=150880852706000
第5步:a=187,找下一个b,
条件:(10*a+b)^n-(10*a)^n<=c,即:
(1870+b)^5-1870^5<=150880852706000,
b取最大值2,差c=28335908584368;与下一段合成,
c=c*10^5+下一段=2833590858436800000
第6步:a=1872,找下一个b,
条件:(10*a+b)^n-(10*a)^n<=c,即:
(18720+b)^5-18720^5<=2833590858436800000,
b取最大值4,差c=376399557145381376;与下一段合成,
c=c*10^5+下一段=37639955714538137600000
㈡ 数学开方怎样速记
笔算开方: 1、把被开方的整数部分从个位起向左每隔n位为一段,用撇号分开; 2、根据左边第一段里的数,求得开n次算术根的最高位上的数,假设这个数为a; 3、从第一段的数减去求得的最高位上数的n次方,在它们的差的右边写上第二段数作为第一个余数; 4、用第一个余数除以n(10a)^(n-1),所得的整数部分试商(如果这个最大整数大于或等于10,就用9做试商); 5、设试商为b。如果(10a+b)^n-(10a)^n小于或等于余数,这个试商就是n次算术根的第二位;如果(10a+b)^n-(10a)^n大于余数,就把试商逐次减1再试,直到(10a+b)^n-(10a)^n小于或等于余数为止。 6、用同样的方法,继续求n次算术跟的其它各位上的数(如果已经算了k位数数字,则a要取为全部k位数字)。
㈢ 开根号的计算方法是什么
开根号就像求一个数的几次方的反义词一样,比如3的2次方是9,那么9开根号2就是3。
在中学阶段,涉及开平方的计算,一是查数学用表,一是利用计算器。而在解题时用的最多的是利用分解质因数来解决。如化简√1024,因为1024=2^10,所以。
√1024=2^5=32;又如√1256=√(2^3*157)=2*√(2*157)=2√314.
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
(3)数学算次方和开根有什么诀窍扩展阅读:
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。
指求一个数的方根的运算,为乘方的逆运算。数a的n(n为自然数)次方根指的是n方幂等于a的数,也就是适合b的n次方=a的数b。
㈣ 开方怎么算
举个例子,1156是四位数,所以它的算术平方根的整数部分是两位数,且易观察出其中的十位数是3。于是问题的关键在于:如何求出它的个位数a?为此,我们从a所满足的关系式来入手。
根据两数和的平方公式,可以得到
1156=(30+a)^2=30^2+2×30a+a^2,
所以1156-30^2=2×30a+a^2,
即256=(30×2+a)a,
也就是说, a是这样一个正整数,它与30×2的和,再乘以它本身,等于256。
为便于求得a,可用下面的竖式来进行计算:
根号上面的数3是平方根的十位数。将 256试除以30×2,得4(如果未除尽则取整数位).由于4与30×2的和64,与4的积等于256,4就是所求的个位数a。竖式中的余数是0,表示开方正好开尽。于是得到 1156=34^2, 或√1156=34.上述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
开方的计算步骤
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用“ ' ”这个符号分开(竖式中的11’56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(20×3除256,所得的最大整数是 4,所以试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商,如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小之后再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用相同的方法,继续求平方根的其余各位上的数。
如碰到开不尽的情况,可根据所要求的精确度求出它的近似值。例如求其近似值(精确到0.01),可列出上面右边的竖式,并根据这个竖式得到。
笔算开平方运算较复杂,在实际中直接应用较少,但用这个方法可求出一个数的平方根的具有任意精确度的近似值。
㈤ 如何开方根
1、整数开平方步骤:
(1)将被开方数从右向左每隔2位用撇号分开;
(2)从左边第一段求得算数平方根的第一位数字;
(3)从第一段减去这个第一位数字的平方,再把被开方数的第二段写下来,作为第一个余数;
(4)把所得的第一位数字乘以20,去除第一个余数,所得的商的整数部分作为试商(如果这个整数部分大于或等于10,就改用9左试商,如果第一个余数小于第一位数字乘以20的积,则得试商0);
(5)把第一位数字的20倍加上试商的和,乘以这个试商,如果所得的积大于余数时,就要把试商减1再试,直到积小于或等于余数为止,这个试商就是算数平方根的第二位数字;
(6)用同样方法继续求算数平方根的其他各位数字。
2、小数部分开平方法:
求小数平方根,也可以用整数开平方的一般方法来计算,但是在用撇号分段的时候有所不同,分段时要从小数点向右每隔2段用撇号分开,如果小数点后的最后一段只有一位,就填上一个0补成2位,然后用整数部分开平方的步骤计算。
㈥ 开根号怎么算
开根号就像求一个数的几次方的反义词一样,比如3的2次方是9,那么9开根号2就是3。
在中学阶段,涉及开平方的计算,一是查数学用表,一是利用计算器。而在解题时用的最多的是利用分解质因数来解决。如化简√1024,因为1024=2^10,所以。
√1024=2^5=32;又如√1256=√(2^3*157)=2*√(2*157)=2√314.
根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
成立条件:a≥0,b>0,n≥2且n∈N。
根号的书写在印刷体和手写体是一模一样的,这里只介绍手写体的书写规范。
1、写根号:
先在格子中间画向右上角的短斜线,然后笔画不断画右下中斜线,同样笔画不断画右上长斜线再在格子接近上方的地方根据自己的需要画一条长度适中的横线,不够再补足。(这里只重点介绍笔顺和写法,可以根据印刷体参考本条模仿写即可,不硬性要求)
2、写被开方的数或式子:
被开方的数或代数式写在符号左方v形部分的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界,若被开方的数或代数式过长,则上方一横必须延长确保覆盖下方的被开方数或代数式。
3、写开方数或者式子:
开n次方的n写在符号√ ̄的左边,n=2(平方根)时n可以忽略不写,但若是立方根(三次方根)、四次方根等,是必须书写。
㈦ 立方根开方技巧
将被开立方数的整数部分从个位起向左每三位分为一组;根据最左边一组,求得立方根的最高位数;商后余数和后面紧跟着的三位,如果没有就添三个0;将要试商的数代入式子“已商数×要试商数×(10×已商数+要试商数)×30+要商数的立方”最接近但不超过第三步得到的数者,即为这一位要商的数。然后重复直到除尽。
求一个数的立方根的运算方法,叫做开立方。它是立方的逆运算,最早在我国的九章算术中有对开立方的记载。
由于任何实数均有唯一的立方与之对应且不存在两个实数的立方相等,故任何实数都存在且仅存在唯一的立方根。
如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。也就是说,如果x³=a,那么x叫做a的立方根。
注意:在平方根中的根指数2可省略不写,但立方根中的根指数3不能省略不写。
㈧ 数学开根号怎么算
开根号相对的运算是平方,其实开根号的计算方法就是按数的平方来推的。因为5的平方是25,所以根号下25等于5。