导航:首页 > 数字科学 > 小学教学中如何渗透数学思想方法的课题研究

小学教学中如何渗透数学思想方法的课题研究

发布时间:2022-09-25 00:16:11

㈠ 小学数学课堂如何渗透数学思想方法

数学思想方法是数学知识的精髓,是对数学本质的认识,是知识转化为能力的桥梁,更是数学学习的一种指导思想和普遍的方法。让学生"获得适应未来社会生活和继续学习所必须的数学基本知识以及基本的数学思想方法"是数学课程标准提出的总体目标之一。因此,为了学生的终身可持续发展,作为小学数学教师,我们不仅要重视显性的数学知识教学,还必须要重视数学思想方法的渗透,不断强化数学思想方法教学,提高数学教学质量。
《小学数学课程标准》中明确提出:在小学数学教学中有意识的地向学生传授一些基本数学思想方法可以加深学生对数学概念、公式、定理、定律的理解,是提高学生数学能力和思维品质的重要手段。小学数学教材中蕴含了很多的数学思想方法,如符号化思想、分类思想、转化思想、统计思想、划归思想等等,学生在学习过程中不单单是学习知识和反复操练,还有一直贯穿始终的数学思想方法。如果说数学教学中知识和技能是一条明显,那么蕴含在其中的数学思想方法就是一条暗线。因此,在小学数学教学中教师注意数学思想方法的渗透,要有目的、有选择、适时地进行渗透,提高数学思想方法教学,让学生掌握好数学思想方法,为学生的可持续发展打下良好的基础。
一、小学数学教学中数学思想方法有效渗透的特点
数学思想方法是以数学知识为载体并对数学知识的进一步概括和提炼,因此它是一种隐性的知识,它需要学生在不断解决问题的实践中通过反复体验去理解和掌握。小学数学教学中有效渗透数学思想方法的特点一般具有:
1.化隐性为显性
在数学教学中数学思想方法隐于知识中,往往只是模糊的表现,在教学中即使直接向学生指出“XX思想”、“XX方法”,也未必能收到好的效果。
如,分数加减法(极限思想)
题1:计算下面各题,并找出得数的规律
题2:应用上面的规律,直接写出下面算式的得数
分析:题目中隐藏着极限的思想,如果继续写下去得数会越来越接近“1”。然而由于学生是第一次接触所以很难体会到其中的极限思想,即使教师向学生指出,他们也不一定就会明白。数学思想方法往往较深的隐藏与知识中,所以教师在教学的应有意识地将这些处于隐性的思想方法显性化,让学生更加清晰的感受到。
2.活动性
教学过程本身就是一个动态的过程,数学思想方法的渗透也应是动态的,需要教师精心设计教学活动,沟通教材与学生的认识,让具有鲜明个性特征的数学思想方法在动态的课堂教学活动中得以更好的呈现。
(1)操作活动
教育家苏霍姆林斯基说过:“儿童的智慧在他们的指尖上。”因为通过动手操作可以促进学生的思维发展。因此小学数学教学可以结合小学生好动、好奇的特点,通过适度的操作活动调动学生多种感官参与认知活动,培养学生的学习能力,促进学生数学思想方法的学习。
如,《圆的面积》教学时,引导学生把圆平均分成8、16、32……等份,然后让学生自己动手拼成一个我们认识的图形。通过这样一个活动性的过程让学生充分体会到把圆平均分成的分数越多,所拼出的图形就越接近长方形,从而让学生进一步体会到极限思想。
(2)观察活动
感知是人们认识事物本质的开端,是人们思维活动的窗户,是对一个刺激做出理解并确定意义的过程。小学生思维仍以形象思维为主,并逐渐由形象思维向抽象思维过渡,在这个阶段中观察是学生发现问题、提出问题、学习新知识的重要途径。在小学数学教学中组织学生进行有序的观察可以让学生更好掌握数学思想方法。
如,仍以《圆的面积》教学为例,在学生动手操作把圆平均分成8、16、32……等份以后,拼成一个近似的长方形时,引导学生进行有序的观察比较,让学生思考拼成的平行四边形与我们已学过的哪个图形越来越接近,再观察这个拼成的图形和原来的圆有什么关系,然后逐步引导学生通过观察得出圆面积的计算公式。
3、加强语言交流活动
爱因斯坦说过:“一个人智力的发展和它形成概念的方法,在很大程度上取决于语言的发展”。小学生由于年龄的小、经验少,他们的语言区域较为狭窄,数学语言就更是缺乏了,而且每个学生的观察角度也可能不同、思考的结果也有不同。因此小学数学教学中要多注意引导学生观察和说,操作与说,听与说相结合,通过这样的教学更好地促进学生对数学思想方法的学习。
二、小学数学教学中思想方法的渗透策略
1、充分挖掘教材中的数学思想方法
由于数学思想方法是一种隐性的本质的知识内容,所以教师在进行教学前必须要深入的钻研教材,充分挖掘教材中所蕴含的思想方法。教师不仅要认真备课,有意识地在教学中渗透数学思想方法,还要做到在平时教学中处处留心,这样会发现很多蕴含在教学内容中的数学思想方法。
2、有目的、有意识地渗透有关数学思想方法
作为小学数学教师在进行数学思想方法教学时,首先我们必须要明确教材中所有的数学思想方法,其次是要对某些重要的思想方法进行分解、细化、让其更具层次性,更加明朗化。这样在教学中教师就可以在具体的教学内容中考虑如何介绍、渗透、突出数学思想方法,以及学生应该是了解、理解、掌握、还是灵活运用这些数学思想方法。
3、有计划、有步骤地渗透数学思想方法
学生的学习时一个循序渐进的过程。因此,在进行教学设计的时候一定要尊重学生的认知规律,要有计划、有步骤地渗透数学思想方法。
(1)反复渗透
首先学生对数学思想方法的理解和掌握是从个别到一般、从具体到抽象、从感性到理性、从低级到高级的认识过程,再者和表层知识相比数学思想方法的抽象概括性更强,因此学生这个认识的过程具有反复性特点。这就是说在小学数学教学中我们不能急功近利,而应遵循反复性原则,一步一步、长期不懈的反复渗透。
如,一年级时就渗透了符号化思想,让学生学会了用原点表示事物的数量,用“()”表示未知数,画“○”的方法进行统计等等,经过如此的反复渗透,不仅可以强化学生对数学思想方法的理解,更促使学生把数学知识有机联系起来。
(2)循序渐进
数学思想方法学习如同数学学习过程一样,是一个认知过程,经历从感性到理性,从领会到形成,从巩固到应用发展的过程,所以在教学中教师可以按照“教师引导――逐步渗透――适时总结,等待顿悟”这一方法,结合教学内容设计教学过程,贯彻循序渐进的原则,由表及里、循序渐进、逐步渗透、结合不同阶段教学内容的知识,有意识的反复渗数学思想方法,螺旋式地再现数学思想方法,切实提高学生的数学素养。
如,数形结合这一数学思想方法,一年级学习“10以内加减法”的时候就会遇到这一思想方法,而到了三年级学习“和倍应用题”时则以线段图的方式出现数形结合,以便学生可以更快、更好的理解题意和解决问题,等到了高年级的时候再求图形的面积、体积以及解答复杂的数学问题时,就会经常的用到这一数学思想方法,而且对提高学生的问题解决能力和思维能力都有很好的促进作用。教学中只有经过循序渐进的渗透才能更加让数学思想方法清晰化,这对学生日后的学习有着非常重要的影响。
三、结束语
如果把数学知识比喻成金子,那么数学思想方法就是“点金术”。数学知识可以记忆一时,而数学思想方法则会永远发挥作用,让我们终身受益,而这才是数学力量的真正所在。因此,我们要从小学起就注重数学思想方法的渗透,为学生的的可持续发展打下良好的基础。

㈡ 简述在小学数学课堂中如何渗透数学文化

一、教师要将教材中的数学文化进行深入挖掘
数学文化在课堂教学中的融入一直是数学教学的重要目标。在小学数学教材中有许多文化因素。正是这些数学文化,使得小学课本内容更具有趣味性与生活性,使得小学生愿意对课本中的内容进行阅读与学习。一般来讲,课本上的数学文化经常是与数学知识相结合的,是为了引出数学知识而存在的。数学文化与数学知识一起,为小学生打造了一个丰富多彩的数学世界。也正是数学文化使得学生认清了数学与生活之间的关系,更立体地对待与观察数学学科,产生数学学习兴趣。
在小学数学教学实践中,教师可利用适当的时机对数学文化进行介绍。比如在学习小数的时候,教师可以从小数的进制方面对十进制及十进制的由来进行分析。教师可以对我国引出十进制的数学家刘徽进行介绍,提出我国早在1700多年前就开始使用十进制计数法。这样,学生在学习小数知识的同时,也可对我国的数学发展历史有一定的了解,在数学文化的了解与学习过程中产生强烈的民族认同感。
小学数学教师要重视自身素质的提高,对数学课本中存在的文化因素进行深入挖掘,使数学文化服务于数学知识的讲授。只有这样,学生才能在学习数学的时候了解到更多的文化知识,认识到数学的文化价值,提高数学学习兴趣。
二、教师要挖掘数学文化中的丰富情感、态度和价值观
首先是如何正确对待数学史料的问题。历史往往沉淀下许多值得流传的史实与价值观念。我们不能仅仅停留于对史实的介绍上,而应引导学生透过史实,触摸到史实背后的价值和观念,使其构成一种更有教育意义的积极影响。如祖冲之是中国古代研究圆周率的骄傲,但仅到此为止,并进行肤浅的爱国主义教育是不够的。他在研究过程中如何“借助正多边形周长研究圆周长”的数学思想和智慧;他不满足于既有结论,不断超越、执着奋进的探索精神等,更应该透过课堂浸润到学生的内心深处。我在教学时,将这一段数学历史有机融入到具体的周长公式的探索过程中来,学生的感受更丰富了,认识也更全面了。此外,我还适时地介绍了我国古代数学的领先与现代数学的落后,并给学生分析造成这一后果的内在原因,深刻的民族尊严感和为中华数学之崛起而奋斗的决心在学生心中升腾。
三、教师要在教学中凸显数学学科的文化属性
一些小学生认为数学与语文这类文化类的科目是相互对立的,数学与文化没有任何关系。这就要求数学教师在教学之时,突出数学学科的文化属性,使学生认识到数学文化的存在。数学是一门理论性较强的学科,学生在学习数学的时候,对于一些数学定义与规则都要进行死记硬背,这使得学生的学习积极性受到打击,对于数学学科的发展也有负面影响。因此,在教学实践中,教师要引导学生更多地了解数学与生活之间的联系,使学生认识到数学知识与社会文化是密切相关的。
四、教师要立足课堂推进数学文化发展
课堂是一切教学研究的试验基地。数学文化在小学数学教学中的有效渗透途径最终要落实在课堂上,只有当教师和学生在课堂交流互动中自觉有意识地关注、领悟数学文化的价值,才能不断推进数学文化的发展。因此,教师要针对数学文化的特点,在小学数学课堂教学中积极渗透、有效实施并逐步形成一系列优秀教学案例。
比如在进行《圆》的讲解时,教师就可以让学生自主发现生活中的圆形,将数学学习与生活实践进行很好的结合。另外,教师要从中国传统文化的角度对圆形进行分析,中国人之所以喜欢圆,是因为圆无棱无角,象征着圆满与安全等。在这样的文化氛围之下,学生会对数学知识有全新的认识。小学数学课堂需要数学文化的支撑,在这样的文化影响下,学生会摆脱对于数学的刻板枯燥的印象,认识与学习数学文化。
五、教师要在课堂教学中丰富数学活动形式
数学活动是数学学习过程中的重要组成部分,教师可以利用丰富多彩的数学活动,使学生了解数学文化。游戏与竞赛是小学生喜爱的活动类型,老师可以利用竞赛小游戏引导学生对数学文化进行学习。在进行数学知识的讲解时,教师可以就与学习知识相关的数学文化进行提问,当有学生回答出时,教师给予奖励。并告诉学生,在下节课,教师还要就数学知识相关的数学文化进行提问,请同学们做好准备。在第二节课,教师可以利用抢答的形式组织学生对数学文化问题进行回答,抢答正确的学生可以获得小红花一枚。在这样的活动之下,学生的数学文化学习积极性会得到提高,学习热情也会随之高涨。
六、教师要善于利用数学文化激发学生兴趣
不同时空数学思想的对比,有利于拓宽学生的视野,培养学生全方位的认识能力和思想境界,还能让学生了解到不同文化背景下的数学观。现行的小学数学实验教材较多地介绍了数学发展的趣事轶闻、辉煌成就、数学家传记、一些数学概念产生的背景资料等数学文化资源。在教学中,适时地向学生介绍这些数学文化,可以丰富教学内容,拓展学生眼界,提高学生的学习兴趣。如:希腊数学家埃拉托斯特尼发明的寻找质数的方法、哥德巴赫猜想、分数产生的历史、“鸡兔同笼”等内容。因此,数学课堂教学中要让学生了解一点数学史,适时进行数学发展中的趣闻轶事、数学典故、数学家传记的教育。教学时结合具体内容,适时地穿插这些数学文化,更能激发学生学习数学的兴趣。

㈢ 如何在小学数学教学中渗透数学思想方法课题研究总结

1、在小学数学教学中渗透数学思想方法的途径
(1)备课:研读教材、明确目标、设计预案,挖掘数学思想方法
“凡事预则立,不预则废”。如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。受篇幅的限制,教材内容较多显示的是数学结论,对数学结论里面所隐含的数学思想方法以及数学思维活动的过程,并没有在教材里明显地体现。因此教师在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中,使教材呈现的知识技能这条明线与隐含的思想方法的暗线同时延展。为此,教师在研读教材时,要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等,教师只有做到胸有成竹,方能有的放矢。
(2)上课:创设情境、建立模型、解释应用,渗透数学思想方法
数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。以下面三种课型为例。
①新授课:探索知识的发生与形成,渗透数学思想方法
数学知识发生、形成、发展的过程也是其思想方法产生、应用的过程。在此过程中,向学生提供丰富的、典型的、正确的直观背景材料,采取“问题情境—建立模型—解释、应用与拓展”的模式,通过实际问题的研究,了解数学知识产生的背景,再现数学形成的过程,揭示知识发展的前景,渗透数学思想,发展学生的思维能力,使学生在掌握数学知识技能的同时,即学会数学概念、公式、定理、法则等的过程中,深入到数学的“灵魂深处”,真正领略数学的精髓——数学思想方法。比如在质数、合数的概念教学中让学生用小正方形拼长 方形,把质数、合数的概念潜藏在图形操作(如右图),明白“质数个”小正方形只能拼成一个长方形,而“合数个”小正方形至少能拼成两个不同形状的长方形(含正方形),渗透数形结合的思想,再通过给这些数分类,引入质数、合数的概念,渗透分类思想。又如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。
②练习课:经历知识的巩固与应用,渗透数学思想方法
数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助图片用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。
“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。
③复习课:学会知识的整理与复习,强化数学思想方法
复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“跃”。
(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法
精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。
在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法? 结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。
(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法
学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。

㈣ 如何在小学数学教学中渗透数学思想方法

《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》
——小学数学教学中渗透数学思想方法思考与实践
汇报:兆麟小学 农丰小学 兰陵小学

今天由我们三人汇报的题目是:《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》
中国科学院院士、着名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”
数学知识和数学思想方法作为小学数学学习的两条线索,一明一暗,相互支撑,其中数学思想方法提示了数学的本质和发展规律,可以说是数学的精髓。下面我们就谈谈数学思想方法。
一、为什么要在教学中渗透数学思想方法
1、基本数学思想方法对学生的发展具有重要意义
一位教育学家曾指出:“作为知识的数学出校门不到两年可能就忘了,惟有深深铭记在头脑中的是数学煌精神和数学的思想、研究方法、着眼点等,这些随时随地发生作用使学生终身受益。”
数学的思想方法是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生思维品质,对数学学科的后继学习,对其他学得的学习,乃至学生的终身发展有十分重要的意义。在小学数学教学中有意识地渗透一些基本数学思想方法,是增强学生数学观念,形成良好思维素质的关键。不仅能使学生领悟数学的真谛,懂得数学的价值学会数学地思考和解决问题,还可以把知识的学习与能力的培养、智力的发展有机地统一起来。
2.渗透基本数学思想方法是落实新课标精神的需求
数学课程标准把“四基”:基本知识、基本技能、基本思想、基本活动经验作为目标体系。基本思想是数学学习的目标之一,其重要性不言而喻。新教材是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验等直观手段解决这些问题。从而加深学生对数学概念、公式、定理、定律的理解,提高学生数学能力和思维品质,这是数学教育实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学新课程改革的真正内涵之在。
二、课教材渗透了哪些数学思想
小学数学中最上位的思想就是演绎和归纳,是数学教学的主线。还有一些常用的数学思想方法:
对应思想、——是指对两个集合元素之间联系的把握。许多数学方法来源于对应思想。比如学生在计算练习时常常有 10 ?
20 ×2 ?
30 ?
40 ?
50 ?
形式出现,这其实就体现了对应的思想。如数轴上的一个点就对应一个数,任何一个数都能在数轴上找到相对应的点,一一对应,呈现完美。
符号化思想、——数学发展到今天,已成为一个符号的世界。英国着名数学家素曾说:“什么是数学?数学就是符号加逻辑。”符号化思想即指人们有意识地、普遍地运用符号化的语言去表述研究的对象。符号化思想在整个小学都有较多的渗透,
例如:阿拉伯数字:1、2、3、5、6、……
+、–、 、 等运算符号;
>、<</SPAN>、=、等表示关系的符号;
( )、[ ] 等括号;
表示数的字母:x、y、z等。
字母表示公式:长方形、正方形的面积S=ab S=a²
字母表示计量单位符号:m\cm\dm\mm\g\km等。
集合思想——把一组对象放在一起作为讨论的范围,这就是集合的思想。如:一年级教材在教孩子认数的时候,用一个圈把一些图画圈在里面,这就是孩子最初所接触到集合雏形,
也是第一次对小学生渗透这种集合思想。在以后后的教学中慢慢体现并集、差集、空集等思想。
极限思想——我国古代就对极限思想的思考,古代杰出的数学家刘徽的“割圆术”就是利用极奶子思想的典型。极限思想是研究变量在无限变化中的变化趋势的思想,运用这一思想,人们的思维可以从有限空间向无限空间,从静态向动态发展,从具体到抽象升华。
统计思想——小学数学中的统计思想主要体现在:简单的数据整理和求平均数,简单的统计表和统计图,学生在会整理、制表、作图的同时要能从数据、图表中发现数学问题和数学信息,得出相关的结论。、
假设思想——是先对题目标中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
比较思想——是数学教学中常见的思想方法之一,也是促进学生思维发展的手段。在数学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快找到解题途径。
类比思想——是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边行面积公式和三角形面积公式。这种思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
转化思想——是一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到。
分类思想——体现对数学对象的分类及其分类的标准如自然数的分类,三角形按边分按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。
数形结合思想——数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的帮助分析数量关系。
代换思想——他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
可逆相思——它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题的方法,有时可以代线段图逆推。如:一辆汽车从甲地开往乙地,第一小时行了1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
化归思想方法——把有可能解决或示解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
变中抓不变的思想方法——在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解,如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
数学模型的思想方法——是对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析等过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
这些数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。下面我们就结合自己对数学思想方法的学习与实践,与大家一起交流。
三、让课堂彰显思想的魅力
首先说说备课:备课时要研读教材、明确目标、设计预案,充分挖掘数学思想方法
如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。因此我们在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中。其实,每册教材都有数学思想方法的渗透,我们每册选取有代表性的单元。

这相对所有教学内容只是冰山一角。为此,我在研读教材时,常常要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等。只有我自己做到胸有成竹,方能给学生渗透相应的数学思想。

2上课:创设情境、建立模型、解释应用,渗透数学思想方法
数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。以下面三种课型为例。
①新授课:探索知识的发生与形成,渗透数学思想方法

如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。
在数学教学中,解题是最基本的活动形式。任何一个问题,从提出直到解决,需要具体的数学知识,但更多的是依靠数学思想方法。因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法。
如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵。到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思。如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个。如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题。然后又将问题改为“只种一端、两端不种时分别种几棵”,学生运用同样的方法兴趣盎然地找到了答案。以上问题解决过程给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题。通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用。
因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识。
②练习课:经历知识的巩固与应用,渗透数学思想方法
数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助图片用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。
“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。
如我在教学四年级“看谁算得巧”一课时,学生计算“1100÷25”主要采用了以下几种方法:①竖式计算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5 ④1100÷25=11×(100÷25) ⑤1100÷25=1100÷100×4 ⑥ 1100÷25=1000÷25+100÷25。在学生陈述了各自的运算依据后,引导学生比较上述方法的异同,结果发现方法①是通法,方法②——⑥是巧法。方法②——⑥虽各有千秋,方法③、④、⑥运用了数的分拆,方法②属等值变换,方法⑤类似于估算中的“补偿”策略,但殊途同归,都是抓住数据特点,运用学过的运算定律、性质转化为容易计算的问题。学生对各种方法的评价与反思,就是去深究方法背后的数学思想,从而获得对数学知识和方法的本质把握。
新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养。
③复习课:学会知识的整理与复习,强化数学思想方法
复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。
数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。
如我在教学五年级“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流。交流之后我又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后(如下图),再次引导学生将这些平面图形面积计算。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”。
(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法
精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。
在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法? 结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。
(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法
学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。

㈤ 试述小学数学教学中如何渗透数学思想

教师为让教学活动开展得更好,就要在教学活动开设期间给学生融合各种方法,并使用这些方法将数学知识分化为不同的思想和类型,然后将每种类型的主要解题方法融入教学进程中,这样能降低学生的学习难度,也能对学生的知识学习有更好的帮助。故此,深入研究小学数学教学中的思想渗透方法是十分必要的。
小学数学教师在开展实际教学工作的时候,先要摒弃传统陈旧的教学方法,使用新的教学方法让其能适应社会发展趋势,做到与时俱进。另外,教师为让学生能对知识有着深刻的认识和理解,就要适度地借助分类知识解决实际中的诸多问题,并在实际教学活动中渗透数学思想。这些思想的应用一方面能让数学的教学效率得到提升,另一方面能激发学生的数学学习兴趣,使学生可以自主地参与到学习中来,从而在师生共同努力中开启小学教学新篇章。
一、数学思想的概述
数学思想是从19世纪90年代开始提出的。该思想的应用,要在长期发展中不断地成熟。但我国对数学思想的研究还有很多不透彻的地方,故此还有很多地方概述不够明确,但我国在发展中能较好地对数学思想进行分类。其实可以将其分成两类:数学思想和数学方法。数学思想主要是从数学本质入手开展的认知活动,先要对已知的数学内容进行重新认识,并提出新的看法和观点。即在小学数学教学期间,教师为更好地指导学生进行数学知识的学习,解决数学中的问题,巩固各项复习环节就要学会从思想上对数学进行认识,并能认识其思想的本质内容。相比较而言,数学的方法更趋向实践性,教师在数学思想支配下要开展不同形式的思想活动,借助于实践发现了解到数学活动开展期间出现的问题,数学方法包含的内容主要有形式、手段和途径。
二、教学中渗透数学思想的方法
(一)分类的思想和方法
分类思想主要是将所有的问题进行细致的分类,零碎的个体划归到一个整体内,并结合一定的原则,进行分类,最终让整体划分为部分。分析不同的部分,实现对整体内容的解决。分类思想在数学教学中意义非凡,也是在小学数学中使用较多的思想,应用分类思想能将复杂的数学知识进行分类应用。
复杂思想分类对方法有着积极影响,面对复杂的数学分类,就要在同一对象属性的前提下开展不同属性的内容展示。这样能让学生对概念和法则有着清晰的认识,以提升学生对问题的解决能力。如,教学活动期间,学生学习有关三角形的内容,可以直接将三角形划分为锐角三角形、直角三角形和钝角三角形,这便于学生对三类三角形本质内容的了解,也能清晰地了解到三角形之间的区别和联系。分类思想的开设要遵循以下原则:第一是标准的同一性原则,每次进行分类所有的标准要统一,不能在一次分类中提出两个或者两个以上的标准,同一个标准可以被看成是同一因素,也可以是两个或者两个以上的因素构成,譬如自然数中找到既能是奇数也能是偶数的数,因而此分类标准就含有两个分类因素。第二是不重复、不遗漏的原则,分类完成以后各个部分之间不能出现重复,也不能出现遗漏,这样才能在同一标准下,各个部分之间相互排斥但是却不相交。比如,学习四边形分类的时候,四边形能被分为平行四边形、梯形和任意四边形,然后可以将平行四边形进行分类分解为一般的平行四边形和长方形。
(二)从数学设计角度考虑深入挖掘数学思想
教师在教学活动开设之时,先要做好有关教学设计的工作。教师在教学设计开设之初,需要将数学思想挖掘看成是思想方法的主要出发点,深入了解教材内容,并将其中的方法提炼出来,然后结合这些方法开展实际的数学工作。如,教师在教学的时候先要给学生讲解《植树问题》,应结合教材讲述内容,使用不同的数学思想开展教学活动,使学生能掌握案例,并深入探究教材中“两端都种”“一端种”“两端都不种”。深入地探究这三类案例,并能在探究中了解到相关知识要点,这样就能在今后的解题中联想案例,从而能解决问题。
(三)知识形成过程中感悟思想方法
数学教学中,思想的方法和知识之间有着密不可分的联系,由于两者很难独立存在。在此状况下,教师就要在教学知识形成期间通过方法渗透,让学生更好地学习相关数学知识。如,教师让学生认识10以内的数字,然后使用视频的方式进行播放,或者是使用动画的方式让学生对10以内的数字有形象的认知,并使用归纳这一方法将相关数字内容归纳在一起。基于此,学生不仅能对10以内的数字有清晰的认识和了解,也能对归纳的思想方法有更加深刻的认知。
(四)反思教学中渗透数学思想
数学教学中,教师在给学生传授基础知识以后,就要让学生对知识有深刻的认识和了解。教师为让学生具有良好的反思意识,就要在整个反思期间,通过渗透数学思想的方法,使学生能对数学的学习过程有深刻的认知。
(五)数形结合思想
数学研究中主要是对现实世界中的空间形式和数量关系进行简单的了解,空间形式可以被看成是“形”,数量关系可以被看成是“数”。数与形多表示同一事物的两个不同方面,两者之间有着相互间的联系,但是彼此之间也能进行转换。使用数形结合的思想就要在抽象和具体之间进行优势性的互补,要求突出它们之间的图形关系,进而直观地表达对应的数量关系,做到以形助教,让问题能更好地解决。另外,图形的性质或者特点可以转换为代数的问题,借助于数助形,获得问题。
数学是重要的学习科目,也是教学中的重点和难点,教师在教学活动期间为能更好地开展数学教学工作,就要在教学中采用各类措施渗透思想方法,让数学教学获得好的效果,学生也能由此掌握更多的数学知识。

㈥ 如何在数学课堂上渗透数学思想

《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》——小学数学教学中渗透数学思想方法思考与实践汇报:兆麟小学农丰小学兰陵小学今天由我们三人汇报的题目是:《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》中国科学院院士、着名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”数学知识和数学思想方法作为小学数学学习的两条线索,一明一暗,相互支撑,其中数学思想方法提示了数学的本质和发展规律,可以说是数学的精髓。下面我们就谈谈数学思想方法。
一、为什么要在教学中渗透数学思想方法1、基本数学思想方法对学生的发展具有重要意义一位教育学家曾指出:“作为知识的数学出校门不到两年可能就忘了,惟有深深铭记在头脑中的是数学煌精神和数学的思想、研究方法、着眼点等,这些随时随地发生作用使学生终身受益。”数学的思想方法是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生思维品质,对数学学科的后继学习,对其他学得的学习,乃至学生的终身发展有十分重要的意义。在小学数学教学中有意识地渗透一些基本数学思想方法,是增强学生数学观念,形成良好思维素质的关键。不仅能使学生领悟数学的真谛,懂得数学的价值学会数学地思考和解决问题,还可以把知识的学习与能力的培养、智力的发展有机地统一起来。2.渗透基本数学思想方法是落实新课标精神的需求数学课程标准把“四基”:基本知识、基本技能、基本思想、基本活动经验作为目标体系。基本思想是数学学习的目标之一,其重要性不言而喻。新教材是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验等直观手段解决这些问题。从而加深学生对数学概念、公式、定理、定律的理解,提高学生数学能力和思维品质,这是数学教育实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学新课程改革的真正内涵之在。
二、课教材渗透了哪些数学思想小学数学中最上位的思想就是演绎和归纳,是数学教学的主线。还有一些常用的数学思想方法:对应思想、——是指对两个集合元素之间联系的把握。许多数学方法来源于对应思想。比如学生在计算练习时常常有10?20×2?30?40?50?形式出现,这其实就体现了对应的思想。如数轴上的一个点就对应一个数,任何一个数都能在数轴上找到相对应的点,一一对应,呈现完美。符号化思想、——数学发展到今天,已成为一个符号的世界。英国着名数学家素曾说:“什么是数学?数学就是符号加逻辑。”符号化思想即指人们有意识地、普遍地运用符号化的语言去表述研究的对象。符号化思想在整个小学都有较多的渗透,例如:阿拉伯数字:1、2、3、5、6、……+、–、、等运算符号;>、<、=、等表示关系的符号;()、[]等括号;表示数的字母:x、y、z等。字母表示公式:长方形、正方形的面积S=abS=a²字母表示计量单位符号:m\cm\dm\mm\g\km等。集合思想——把一组对象放在一起作为讨论的范围,这就是集合的思想。如:一年级教材在教孩子认数的时候,用一个圈把一些图画圈在里面,这就是孩子最初所接触到集合雏形,也是第一次对小学生渗透这种集合思想。在以后后的教学中慢慢体现并集、差集、空集等思想。极限思想——我国古代就对极限思想的思考,古代杰出的数学家刘徽的“割圆术”就是利用极奶子思想的典型。极限思想是研究变量在无限变化中的变化趋势的思想,运用这一思想,人们的思维可以从有限空间向无限空间,从静态向动态发展,从具体到抽象升华。统计思想——小学数学中的统计思想主要体现在:简单的数据整理和求平均数,简单的统计表和统计图,学生在会整理、制表、作图的同时要能从数据、图表中发现数学问题和数学信息,得出相关的结论。、假设思想——是先对题目标中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。比较思想——是数学教学中常见的思想方法之一,也是促进学生思维发展的手段。
在数学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快找到解题途径。类比思想——是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边行面积公式和三角形面积公式。这种思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
转化思想——是一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到。
分类思想——体现对数学对象的分类及其分类的标准如自然数的分类,三角形按边分按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。
数形结合思想——数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的帮助分析数量关系。代换思想——他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
可逆相思——它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题的方法,有时可以代线段图逆推。如:一辆汽车从甲地开往乙地,第一小时行了1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
化归思想方法——把有可能解决或示解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
变中抓不变的思想方法——在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解,如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
数学模型的思想方法——是对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析等过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
这些数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。下面我们就结合自己对数学思想方法的学习与实践,与大家一起交流。三、让课堂彰显思想的魅力首先说说备课:备课时要研读教材、明确目标、设计预案,充分挖掘数学思想方法如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。
因此我们在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中。其实,每册教材都有数学思想方法的渗透,我们每册选取有代表性的单元。这相对所有教学内容只是冰山一角。为此,我在研读教材时,常常要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等。只有我自己做到胸有成竹,方能给学生渗透相应的数学思想。2上课:创设情境、建立模型、解释应用,渗透数学思想方法数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。
以下面三种课型为例。①新授课:探索知识的发生与形成,渗透数学思想方法如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。在数学教学中,解题是最基本的活动形式。任何一个问题,从提出直到解决,需要具体的数学知识,但的是依靠数学思想方法。因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法。如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵。到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思。如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个。如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题。然后又将问题改为“只种一端、两端不种时分别种几棵”,学生运用同样的方法兴趣盎然地找到了答案。以上问题解决过程给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题。通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用。因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识。②练习课:经历知识的巩固与应用,渗透数学思想方法数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助图片用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。如我在教学四年级“看谁算得巧”一课时,学生计算“1100÷25”主要采用了以下几种方法:①竖式计算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5④1100÷25=11×(100÷25)⑤1100÷25=1100÷100×4⑥1100÷25=1000÷25+100÷25。在学生陈述了各自的运算依据后,引导学生比较上述方法的异同,结果发现方法①是通法,方法②——⑥是巧法。方法②——⑥虽各有千秋,方法③、④、⑥运用了数的分拆,方法②属等值变换,方法⑤类似于估算中的“补偿”策略,但殊途同归,都是抓住数据特点,运用学过的运算定律、性质转化为容易计算的问题。学生对各种方法的评价与反思,就是去深究方法背后的数学思想,从而获得对数学知识和方法的本质把握。
新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养。③复习课:学会知识的整理与复习,强化数学思想方法复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。如我在教学五年级“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流。交流之后我又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后(如下图),再次引导学生将这些平面图形面积计算。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”。(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法?结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。

㈦ 数学思想方法如何渗透到教学中去

课堂教学应着眼于学生潜能的发挥,促进学生有特色的发展。使学生富有探究新知、不断进取的精神。下面是我为大家整理的关于数学思想 方法 如何渗透到教学中去,希望对您有所帮助。欢迎大家阅读参考学习!

1数学思想方法如何渗透到教学中去

(一)渗透如数学思想的概念显得较为模糊

因为在小学教学阶段,教师教授的数学知识都是比较简单的,因此数学思想自然也就会显得比较模糊,在小学数学课堂教学相关工作进行的过程中,从事数学教学相关工作的教师,想要将数学思想渗透到较为模糊的概念中是比较困难的,在日常教学相关工作进行的过程中,一般情况之下都是不会予以数学思想教学工作充分的总是的,单单是将数学教学当成是基础性数学知识教学工作,仅仅在教学相关工作进行的过程中传授给学生一些解答问题的方式方法,基本上是不会在数学思想的层面上对学生进行引导的,从而在此基础之上想要使得数学思想和小学数学教学有机的相互融合在一起就变得比较困难。

(二)学生在学习数学的过程中基本上不会做出 反思

小学生正处于的是形象思维为主的这样一个阶段,在学习数学知识的过程中并没有形成较为明确的认识和观点,从而在此基础之上想要对某些抽象的数学概念形成明确的了解就会变得比较困难,因此在学习数学的过程中一般情况之下都是停留在最为基础的模仿式学习阶段中的,依据教学教学流程展开模仿式数学学习,在此基础之上学生形成的认识观点自然也是较为模糊的,进而在模仿式学习的基础上,想要在学习工作完成之后对数学学习做出反思也就是一件比较困难的事情。

(三)对知识进行 总结 和整理的意识是较为薄弱的

小学数学教学阶段中包含的知识点是十分琐碎的,当教师开展教学相关工作的过程中想要将各个知识点串联起来也就是一件比较困难的事情,当教师开展课堂教学相关工作的过程中,一般情况之下仅仅会在复习的时候开展知识点梳理工作,在日常课堂教学相关工作进行的过程中,一般情况之下都是不会向学生阐述各个知识点之间呈现出来的相互关系的,学生在日常学习的过程中自然也就难以积累下来丰富的 经验 及解决模式,因此教师想要使得课堂教学相关工作的效率得到一定程度的提升自然也就比较困难。

2渗透到教学中的方法

1.在研究探索知识的过程中,着重于将数学思想方法渗透到学习中

教师应该加强在学生学习过程中教学的力度,一定要凸显出数学知识中一些定理、公式、性质等得来的探究过程,进而使同学们把过程转换成解决问题的思想和方法。知识形成并发展的过程中应穿针引线地将数学思想方法渗入其中,让学生能够掌握简单的基础知识,也能体会深层数学原理、性质的探索过程,形成良好的解题思路,使学生在数学方面的造诣达到一个新的高度。教师在授课过程中,要引导学生自觉地对数学知识、方法进行探究、学习,主动追溯知识的探索过程,感悟数学知识,将数学思想方法与数学知识的学习融会贯通,使其在数学方面达到质的飞跃。

2.在解题和讲解例题的过程中渗透数学思想方法

在授课中,教师讲解例题并且举一反三,每解决一个问题和例题就为学生归纳总结出一种方法,久而久之,学生就会形成新的解题思路、学会新的解题方法。对于初中这个阶段来讲,许多典型例题被设计出来,许多出色的题目也出现在每年中考题中,老师有效地挑选具有启示性和创造性的题目进行训练,再将数学思想和 教学方法 展示在对这些问题的讲解和探究中,可以培养学生的解题能力。

3.按时总结,渐进地消化数学思想方法

在初中的数学知识体系中蕴含着数学思想,不同的数学思想通常蕴藏于一个内容中,而同一个数学思想方法又常常被运用于许多不同的基础知识中,教师在对一道题目进行分析后,要清晰地向学生展示出教师在解决这道题时的思路以及解决这道题需要哪些我们原先学习的知识以及解题方法。与此同时,要引导学生对新方法、新思路的思考,锻炼其发散性思维。老师通过“一题多解”及举一反三等方式及时巩固,使学生慢慢内化这些数学思想、解题思路等。

3解题渗透数学思想方法

(1)注意分析探求解题思路时数学思想方法的运用。解题的过程就是在数学思想方法的指导下,合理联想提取相关知识,调用一定数学方法加工、处理题设条件及知识,逐步缩小题设与题干之间的差异的过程。解题思想的寻求就自然是运用数学思想方法分析、解决问题的过程。

(2)注意数学思想方法在解决典型问题中的运用。如解题中求二面角大小最常用的方法之一就是:根据已知条件,在二面角内寻找或作出过一个面内一点到另一个面上的垂线,过这点再作二面角的棱的垂线,然后连结两个垂足。这样平面角即为所得的直角三角形的一锐角。这个通法就是在立体问题化平面的转化思想的指导下求得的,其中三垂线定理在构图中的运用,也是分析、联想等数学思维方法运用之所得。

(3)用数学思想指导知识、方法的灵活运用,进行一题多解的练习,培养思维的发散性、灵活性、敏捷性;对习题灵活变通、引伸推广,培养思维的深刻性、抽象性;组织引导对解法的简捷性的反思评估,不断优化思维品质,培养思维的严谨性,批判性。对同一数学问题的多角度的审视引发的不同联想,是一题多解的思维本源。丰富合理的联想,是对知识的深刻理解,及类比、转化、数形结合、函数与方程等数学思想运用的必然。数学方法、数学思想的自觉运用往往使我们运算简捷、逻辑严密,是提高数学能力的必由之路。

4提高课堂教学效率

重视备课,明确教学目标

如果说数学是一门艺术,那么备好课是搞好艺术的基本条件。不经武装的战士上战场,只能束手就擒;没有充分准备的教师上讲台,充其量是"信口开河",决谈不上驾驭课堂的能力,作为教师,传授知识是我们的责任,出色的备课也是我们实行责任的前提。那怎么去用心备课呢?在此我只谈谈自己的感悟:首先,选好合适的起点,起点就是新知识在原有知识基础上的生长点。起点要合适,采有利于促进知识迁移,学生才能学,才肯学。起点过低,学生没兴趣,不愿学;起点过高,学生又听不懂,不能学。

其次,明确重点,每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在备课时,应该在课本上做标记。重点往往是新知识的起点和主体部分。备课时要突出重点。一节课内,首先要在时间上保证重点内容重点讲,要紧紧围绕重点,以它为中心,辅以知识讲练,引导启发学生加强对重点内容的理解,做到心中有重点,讲中出重点,才能使整个一堂课有个灵魂。最后,注重联系,即新旧知识的联系。数学知识本身系统性很强,章节、例题、习题中都有密切的联系,要真正搞懂新旧知识的交点,才能把知识融会贯通,沟通知识间的纵横联系,形成知识网络,学生才能举一反三,更有利于灵活地运用知识。作为教师,切记备课的重要性,一切的一切都要从备课开始,出色的备课是成功课堂教学的前提。

重视教学方法的作用,加强学法的指导

曾经看过这么一句话,说的是"未来的文盲不再是不识字的人,而是没有学会怎样学习的人"。这充分说明了 学习方法 的重要性,它是获取知识的金钥匙。学生一旦掌握了学习方法,就能自己打开知识宝库的大门。所以我们应该改进课堂教学,运用正确的教学方法去指导学生的学法,传授给学生的不仅仅是知识,更重要的是学习方法。同时每一节课都有每一节课的知识点,都有需要掌握的重点内容。教师能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。我们可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。有时,在一堂课上,要同时使用多种教学方法。俗话说:"教无定法,贵要得法"。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。教会学生的学习方法,是我们作为教师的责任。

综上所述,学好数学对学生将来的发展起到至关重要的作用,作为教师,我们要认真备课,全身心的投入课堂,创造最佳的课堂气氛和环境,充分调动学生的内在积极因素,激发求知欲,千方百计使学生的注意力高度集中,同时还应该不断地努力提高自己的能力,在有限的时间内,将知识最大化的传授给学生,提高课堂教学效率。


数学思想方法如何渗透到教学中去相关 文章 :

★ 高考复习中应重视数学思想方法的渗透

★ 数学教学方法渗透六大核心素养

★ 高中数学思想和数学方法

★ 数学教学如何渗透六大核心素养

初中数学思想方法教学论文

★ 小学学习数学的思想方法

★ 数形结合数学思想方法

★ 核心素养如何落地数学教学

★ 核心素养如何融入数学课堂教学

㈧ 浅谈数学思想方法在小学数学教学中的渗透

为加强小学生的数学思维逻辑,提高数学课堂的教学效率,教师需采用科学有效的教学方法保证数学思想的有效渗透,从而激发学生的学习热情,强化学生的数学意识,带领学生运用数学思维解决实际生活问题。
教师在以往数学课堂内注重学生的数学成绩,未将学生在实际学习过程的数学方法进行充沛的指导,使得学生对数学问题具有一定的思想偏颇,加大教师的教学难度,无法全方位培养学生的综合能力。
因此,教师应结合时代潮流教学方法,根据教材具体内容展开相应的教学手段,充分加强学生的数学素养,进而提高学生对数学抽象性概念的理解,强化学生的数学意识,保证数学教学任务的有效进行。
一、小学生学习特点
由于小学生的年龄较低,对事物具有极强的好奇心,无法在数学课堂上集中注意力,继而导致自身的学习效率有所下降。所以,教师应结合学生在课上的学习状态,设计丰富的教学内容,调动学生积极性,激发学生的主观能动性,加强学生对数学基础知识的理解。教师应升华自身的教学素养,充分利用专业知识强化对学生数学思想的教育,联系实际生活内容,活跃课堂氛围,进而保证数学课堂的实效性[1]。
二、小学数学思想方法介绍
(一)数形结合法
教师要改变传统教模式中填鸭式教学方法,发挥学生的主观能动性,加强学生对事物的空间想象能力,培养学生的创新能力,使学生全面了解教师所讲的数学知识,从而激发学生的学习热情。基于此,教师可采取数形结合的教学模式帮助学生更好掌握基础知识要义,培养学生的良好学习习惯。在讲解具体内容时,教师要将抽象化概念转换为具体形象,加强学生实际的运算能力,提高数学思想在课堂上的渗透。
(二)总结法
总结法是教师常用的教学手段,通过课上最后的时间带领学生复习巩固相应的知识内容,增强学生的数学素养。因此,数学教师可将此方法融入课堂教学,加强学生对数学知识的运用能力,帮助学生建立相应的数学体系,使其能够正确解答有关数学问题,逐步培养学生的自主学习能力。由于小学阶段是学生学习的黄金时期,教师要从多方面加强对学生综合能力的培养,实现数学课堂的有效教学,保证教学进度。
(三)转化法
学生作为独立个体听取教师讲解的数学内容会产生不同的学习效果。教师要改变传统教学氛围,创设科学有效的教学环境,保持学生整节课的充沛精力,激发学生的学习兴趣。利用转化的教学方法增强学生对抽象概念的理解能力,时刻与学生沟通交流,根据学生的具体学习情况设计丰富的教学内容,继而增强学生对数学知识后的实际运用。
三、在小学数学教学中渗透数学思想方法的途径
(一)在课后总结中提炼数学思想
小学数学教材将学生所学的重点知识内容进行充分的整理,使得学生在每章完结之后都能有效复习相应概念,因此,教师应注重小学教材的布置内容,灵活运用课后知识增强学生的数学意识,完善学生的学习方法,逐步加强对学生数学问题的灵活运用。
比如在学习《图形的运动(二)》内容时,教师就要逐步引导学生对数学公式的理解能力,通过课后复习强化学生对数学问题的计算。首先教师要通过激趣导入吸引学生注意力,带领学生观察多媒体课件,明确抽对称的定义及性质,带领学生回顾相应的数学问题后,教师要让学生进行动手实践,将教材附页上的图形剪下,先折一折,再画出图形的对称轴,并让学生观察每个图形可以画多少对称轴,在学生实践过程中增强学生的数学思想。通过课后总结带领学生明确长方形、正方形、等腰梯形、等腰三角形、等边三角形、线段、菱形等图形的对称轴具有多少条,加强学生的学习效果,逐步培养学生的理性思维模式。
(二)在课堂教学中挖掘可利用的数学思想
为加强学生对数学思想的理解能力,教师应紧跟时代潮流发展,改变教学理念,摒弃传统教学思想,根据教材的具体内容与学生上课的实际情况,逐步挖掘可利用的数学思想,强化学生的逻辑思维,使得学生的学习效率不断增强[2]。
比如在学习《可能性》内容时,教师就要摒弃传统教学手法,采用科学有效的教学手段加强对学生的数学思想教育。首先通过问题引导引发学生的思考能力“抛硬币决定谁先开球公平吗?”带领学生初步体验事件发生的确定性与不确定性,并让学生列出简单的随机现象中所有可能发生的结果。其次教师要创设相应的问题情景,带领学生发现实际生活问题,如:哥哥弟弟都很想去电影院看电影,但是爸爸只有一张儿童票,只能给其中一个人,这时就要让学生充分思考课题采取什么样的方法保证公平,从而加深学生的可能性知识概念的运用能力,保证数学课堂的教学质量,加强学生对实际问题的数学思想。
(三)活跃数学思想氛围,调动学生积极性。
教师应明确数学思想存在于教材与学生的方方面面,需带领学生不断进行数学实践活动,侧面提高学生的数学思维逻辑,强化学生的学习方法,从多角度激发学生的学习积极性。教师要结合教材具体内容,发挥学生的主观意识,营造良好的数学思想学习氛围,采用循序渐进的教学方法,根据教材重难点知识内容,合理设计教学过程,加强学生的数学教育,发散学生的创新思维,全方位培养学生综合能力[3]。
比如在学习《百分数(一)》内容时,教师不应根据教材体现的内容进行教学,应以学生的数学思想为中心,发挥学生的创新能力。首先借用多媒体技术让学生观察每个人的不同情况,并思考如何派遣队员进行足球运动,加强学生的思考逻辑。其次,教师应让学生针对具体问题进行小组间的合作交流,强化学生的语言表达能力,活跃课堂氛围,营造良好的学习环境,激发学生对数学的学习兴趣。教师应及时了解学生所提的数学问题时刻与学生沟通交流。优化师生之间的关系,加强对学生逻辑思维的培养,实现数学思想的深度教学作用,从而提高小学数学课堂的教学质量,全面落实数学思想教育,利用丰富的教学资源提高学生自主学习意识。
结束语:
综上所述,为强化学生的数学意识,教师应全方位认识数学教材内容,利用抽象性知识体系提高学生的自主学习能力,从而实现小学课堂的有效教学。通过在课后、课时挖掘数学思想,不断加强学生对数学的认知能力,培养学生良好的学习习惯。教师应以学生为主体地位,升华自身的教学素质,使用专业的知识水平保证小学数学课堂的教学进度。

阅读全文

与小学教学中如何渗透数学思想方法的课题研究相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1301
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1026
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:979
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1654
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1060