❶ 高中数学期望与方差公式汇总有哪些
如下:
方差公式:S^2=〈(M-x1)^2+(M-x2)^2+(M-x3)^2+…+(M-xn)^2〉╱n。
平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)。
期望的公式:E=X1*P1+X2*P2+X3*P3+.+Xn*Pn。
高中数学期望与方差公式应用:
1)随机炒股。
随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率<50%,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。
2)趋势炒股。
趋势炒股是建立在惯性理论上的,胜率跟经验有很大关系,基本上平均胜率可以假定为60%,则败率为40%,一般趋势投资者本着赚点就跑,亏了套死不卖的原则,如涨10%止盈,跌50%止损,数学期望为EP=60%*10%-40%*50%=-0.14,必输无疑。
❷ 数学期望和平均值一样吗有何区别
期望可以理解为加权平均值,权数是函数的密度。
对于离散函数,E(x)=∑f(xi)xi
平均值一般就是算数平均值。
一般在统计中,你希望知道整体的期望,所以就用样本的平均值来估计期望。例如你想知道你打靶的水平是怎么样的,你就打10靶作为样本,它的平均值是你打靶水准的估计值.
样本的平均值是期望的无偏估计。
❸ 数学的期望值为什么等于平均值,能举例子或证明吗
数学期望反映的是随机变量最大概率的那个值,跟平均值还是有差别的。
如果这n个随机变量的值相同,那此时期望才和平均值相同,期望对随机变量的出现概率做了加权,而算术平均值则认为每个变量的权重都是1,即是相同的。
❹ 均值和数学期望是什么怎么区分
均值和数学期望没有区别。在概率论以及统计学中,数学期望或均值,亦简称期望,是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一,反映了随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于“期望”—“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
在概率和统计学中,一个随机变量的期望值(或期待值)是变量的输出值乘以其机率的总和,换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
(4)数学期望怎么求平均数扩展阅读
数学期望的应用
(1)经济决策
假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元。
若供大于求,则削价处理,每处理一单位商品亏损100元;若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润。并求出最大利润的期望值。
分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。
因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。
(2)体育比赛问题
乒乓球是我们的国球,上世纪兵兵球也为中国带了一些外交。中国队在这项运动中具有绝对的优势。现就乒乓球比赛的安排提出一个问题:假设德国队(德国队名将波尔在中国也有很多球迷)和中国队比赛。
赛制有两种,一种是双方各出3人,三场两胜制, 一种是双方各出5人,五场三胜制,哪一种赛制对中国队更有利。
分析:由于中国队在这项比赛中的优势,不妨设中国队中每一位队员德国队员的胜率都为60%,接着只需要比较两个队对应的数学期望即可。
参考资料来源:网络-数学期望
❺ 数学期望和算术平均的关系
算术平均是来自样本的,是近似的;数学期望是母体的,是精确的。
1、期望是个确定的数,是根据概率分布得到的。不管进不进行实验,期望都可以求出来。
数学期望,又称为均值,即"随机变量取值的平均值"之意,这个平均是指以概率为权的加权平均。
2、平均数(mean),是做多次实验之后,总和的平均数。
(5)数学期望怎么求平均数扩展阅读:
算数平均的特点
1、算术平均数是一个良好的集中量数,具有反应灵敏、确定严密、简明易解、计算简单、适合进一步演算和较小受抽样变化的影响等优点。
2、算术平均数易受极端数据的影响,这是因为平均数反应灵敏,每个数据的或大或小的变化都会影响到最终结果。
数学期望的性质:
1、设X是随机变量,C是常数,则E(CX)=CE(X)。
2、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。
3、设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。
4、设C为常数,则E(C)=C。
❻ 数学期望就是平均值吗
数学期望不是平均值。
1、期望是个确定的数,是根据概率分布得到的。不管进不进行实验,期望都可以求出来。
数学期望,又称为均值,即"随机变量取值的平均值"之意,这个平均是指以概率为权的加权平均。
2、平均数(mean),是做多次实验之后,总和的平均数。
(6)数学期望怎么求平均数扩展阅读:
数学期望的应用
1、经济决策
假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元。
若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润?并求出最大利润的期望值。
分析:由于该商品的需求量(销售量)X是一个随机变量,它在区间[10,30]上均匀分布,而销售该商品的利润值Y也是随机变量,它是X的函数,称为随机变量的函数。题中所涉及的最佳利润只能是利润的数学期望(即平均利润的最大值)。
因此,本问题的解算过程是先确定Y与X的函数关系,再求出Y的期望E(Y)。最后利用极值法求出E(Y)的极大值点及最大值。
2、体育比赛问题
乒乓球是我们的国球,上世纪兵兵球也为中国带了一些外交。中国队在这项运动中具有绝对的优势。现就乒乓球比赛的安排提出一个问题:假设德国国队(德国队名将波尔在中国也有很多球迷)和中国队比赛。
赛制有两种,一种是双方各出3人,三场两胜制, 一种是双方各出5人,五场三胜制,哪一种赛制对中国队更有利?
分析:由于中国队在这项比赛中的优势,不妨设中国队中每一位队员德国队员的胜率都为60%,接着只需要比较两个队对应的数学期望即可。
❼ 数学的期望值为什么等于平均值,能举例子或证明吗
数学期望反映的是随机变量最大概率的那个值,跟平均值还是有差别的。如果这n个随机变量的值相同,那此时期望才和平均值相同,期望对随机变量的出现概率做了加权,而算术平均值则认为每个变量的权重都是1,即是相同的。
❽ 概率平均值 如何计算
概率平均值即概率上的平均值,也就是数学期望,是简单算术平均的一种推广,类似加权平均.
下面供参考:
离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(x).
EX是随机变量最基本的数学特征之一.它反映随机变量平均取值的大小.
EX又称期望或均值.
如果随机变量只取得有限个值,称之为离散型随机变量的数学期望.
它是简单算术平均的一种推广,类似加权平均.
例如:
某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11.
❾ 数学期望在数值上等于平均数吗,求回答
总体的算术平均数,又叫数学期望。
注意,平均数有总体平均数与样本平均数之分,又有算术平均、几何平均、调和平均、平方平均之分。只有总体的算术平均数,才等于数学期望。
❿ 数学期望的公式是什么
E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn)
X ;1,X ;2,X ;3,……,X。
n为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xn).
(10)数学期望怎么求平均数扩展阅读
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。