导航:首页 > 数字科学 > 数学课中引入古代数学家有什么意义

数学课中引入古代数学家有什么意义

发布时间:2022-09-25 10:05:42

❶ 学习数学史的意义

学习数学史,有其科学意义、文化意义和教育意义。

1、数学史的科学意义:

数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,数学传统与数学史材料可以在现实的数学研究中获得发展。

2、数学史的文化意义

数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。

3、数学史的教育意义

数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素。

因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。

(1)数学课中引入古代数学家有什么意义扩展阅读

数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与文化本质。

作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。

数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段,在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。

❷ 数学家的作用是什么为什么要有数学家学奥数有什么用

数学家有很大作用,在各个领域都少不了数学家的身影,他们可以帮助人们算出很精密的东西
很多科学家和发明家数学都很好的。
至于奥数,到现在我还没有想出它有什么作用,生活中哪里需要这么拐弯抹角的东西?应该是有一个数学狂人,超爱数学,尽挑那些拐弯抹角的数学题来做。被小升初的人发现了,就觉得是个好办法对付学生,就有了奥数。。。

❸ 数学家的作用是什么为什么要有数学家学奥数有什么用

数学家有很大作用,在各个领域都少不了数学家的身影,他们可以帮助人们算出很精密的东西
很多科学家和发明家数学都很好的。
至于奥数,到现在我还没有想出它有什么作用,生活中哪里需要这么拐弯抹角的东西?应该是有一个数学狂人,超爱数学,尽挑那些拐弯抹角的数学题来做。被小升初的人发现了,就觉得是个好办法对付学生,就有了奥数。。。

❹ 数学史料如何进入数学教学

数学,是最能体现人类智慧的一门学科,也是人类文明赖以生存的学科,作为人类思维的表达形式,它反映了人民积极进取的意志、缜密周详的逻辑推理以及对完美境界的追求。中学数学是素质教育的重要组成部分,对培养学生分析解题能力、逻辑推理能力、空间想象能力等都非常重要。而数学史教育对中学数学教育的巨大影响力在近年来愈加为人所获知,越来越多的国家开始重视数学史的教学,我国也不例外,数学史教学已成为数学教学中不可或缺的一部分了,由中华人民共和国教育部门定制的《普通高中数学课程标准》于2003年正式出版,该条例明确地提出学生要“感受在人类历史文明进程中数学的力量,体会数学家们在探究新知的过程中严谨的科学态度和大无畏的探索精神,激发学生对学习数学的兴趣,提高学生对数学的理解感悟能力。” 中学数学老师所要必备的教学素质有很多,其中教师对数学史的扎实掌握是非常重要的一项。教师只有掌握一定的数学史知识,才能改进自身的教学不足,提高自身的数学素养,才能真正的把握到数学发展的脉络,向学生传授真正完整的知识。
2、数学史的内涵
要全面的了解一样事物,我们就要了解清楚事情的来龙去脉,要学会数学,我们就要追问数学的发展历程。 “研究这门学科的历史与现状我是们预测数学未来的适当途径。”引用法国着名数学家亨利·庞加莱的原话,也就是说如果我们只是一味的强调知识的掌握却不去了解清楚这些知识的发展历史,那么对这些学生来说,他们所学到的只是些数学的片段知识,并不能真正地认清数学这一学科,而数学史却可以给我们展示知识的总体面貌,让我们更好地地认清数学的过去、现在与未来。
作为一门研究该学科的产生发展及其规律的科学,数学史不仅仅是史料知识这么简单,它还可以追溯到数学的内涵、思维逻辑方式的衍化、发展历程,此外,它还研究数学发展对人类五千多年的文明所带来的影响以及其在人类历史上举足轻重的地位。有人单纯地认为数学史研究就是仅仅为了弄清楚有哪些知识在哪一年由哪个数学家提出的,人类目前为止知道了哪些知识、不知道那些知识,毋容置疑,这是数学史要研究的工作之一,也是最为基础的工作。但是,学习数学史更重要的目的是为了在教学工作中,让师生站在现代数学的成果上,从源头处清理该学科的发展方向和发展规律、并认清它的逻辑思维方式,从本质上更好地理解数学,学会数学。
3、数学史在中学数学教学中的作用
在新课标下改革的大潮下,中学数学课本相应地也增加了不少数学史方面的知识。那么,数学史在中学数学教学中究竟起着怎样的作用呢?作为一个即将踏出学校从事数学教学事业的准老师,我觉得具体有以下几点作用:
3.1数学史能激发学生对学习数学的兴趣
新课标强调教师在教学过程中不仅要重视过程与方法,还要重视学生的情感与态度,只有这样,学生才会对学习产生浓厚的兴趣。在很多学生看来,数学是一门枯燥无味的学科,它既不像语文那样语言优美,又不像英语那样在生活中实用性强,让很多人提不起兴趣来学习。但数学在人类文明上又是不可或缺的,它是一门逻辑性、抽象性很强的学科,如果纯粹的去讲数学知识不去重视培养数学兴趣,那么学生就只是被动的学习,学习主动性就会受到抑制,而数学史在激发学生 学习数学的兴趣就有很大的帮助了,把数学史渗透到数学课堂教学中来能让数学教学活跃起来,不仅有利于学习效果的深化,还可以激发和提高学生数学学习的兴趣。
在课堂一开始,根据教学内容讲叙相应数学家的故事,这样可以引起学生浓厚的兴趣,把心思从课间活动中转移到数学教学当中,这是创造最佳课堂情境,为课堂教学作铺垫的一种好的方法,不仅如此,在教师讲述数学典故的时候,学生的视野还得以开阔,这让他们知道原来这些看似乏味的知识背后却有一个如此一番故事,那么他们对所学的知识提起兴趣了。如在讲数列的前n项和时,在课堂开始开始的时候给学生讲高斯小学被罚算前一百位正整数和的故事,这样学生的心思很快就吸引到课堂来了。除此以外,教师在课堂中引入历史名题也起到引起学生兴趣的作用,许多历史名题的提出都与数学家的有关,学生在思考问题的时候就会不经意的想到这个问题许多大数学家思考过,就会感到一种挑战,自己现在思考的题目许多伟大的数学家也思考过,不知他们所遇到的困惑是否跟我的一样呢,即使想不出来学生也会对题目产生深厚的兴趣。
3.2数学史能加深学生对数学知识的理解
中学生的数学教材由于受一定的局限因素的限制,传授的知识虽然有一定的系统性,但学生对知识的来龙去脉还是不能有个清晰细致的理解,我们就可以利用数学史上人类认知的过程规律,对知识主干进行垂直梳理,使学生头脑中的知识脉络更加清晰,有利于学生对知识的深刻理解和记忆。数学史可以让学生更容易去接受新学的知识,在学生第一次接触代数,第一次面对用字母代替具体的数、时,他们常常会感到迷惑,不知为何要如此,这时教师若想改变这种状况,就可以在课堂上向学生讲述相关数学史料,帮助学生梳理、理解所学的的数学知识。数学的发展历史很长,而现今学生学习到的数学知识是间接学习所得,以前数学家所经历的困难正是学生现在经历的障碍,正因为这些知识产生的过程与学生间接学习的过程十分相似,数学史的讲授就可以帮助学生更好的理解数学知识。总的来说,数学知识是一环紧扣一环的,通过数学史对头脑中所学习的知识的梳理,学生可以更好地在脑海中建立各知识点间、各学科间以及学习与生活间的联系,为更为深刻地理解数学做好铺垫。
在数学历史上无理数的出现曾引发了第一次数学危机,在很长一段时间内人们在心理上都不愿意接受这一事实,学生在学习这个曾经引起动荡的无理数时并不容易,山西某中学曾做过调查,对于无理数相关知识,70%学生只是会做题目,对无理数的概念并没有深刻的理解,这势必对后面的学习造成一定的影响。查阅相关数学史料,我们就发现:在数学史上人们对无理数的发现和理解的过程是想到漫长的,在这个过程当中也犯了不少错误,这样我们就很好的了解学生在学习这一概念时遇到困难是不出奇的,这只是历史的“再现”。所以,在课堂上教师可对学生多讲一些无理数的发展史,这有利于帮助学生理解并接受这一知识。
3.3数学史有助于学生掌握数学思维方法
数学是一门特别的学科,它的特别在于数学有极其严密的思维逻辑形式。我们之所以要学习数学,就是希望通过在数学学习的过程中去锻炼我们的大脑,让我们形成精确缜密的逻辑思维方式和锻炼提高我们的创造能力。实施证明,数学史为这一教育目的的实现起到了不可磨灭的作用。现在中学数学教 材向学生呈现的更多的是系统性的、“天衣无缝”的知识,语言十分的简练,基本都是按定义、定理、证明、推理、例题练习等固定形式去编排,学生在学习过程中跟多的是单纯的去接受这些知识,而缺乏一种真正的数学思维过程,由于学生认知水平的局限,这样他们很容易产生不正确的观点想法,虽然能简速便捷地接受到大批的知识,却让学生轻易认为数学知识学习的过程就固定的是“定义——得出性质定理——做题”,事实是系统化了,却无法让学生清楚了解到知识是经过发现问题、提出假设、论证假设、得出结论并完善,逐步的、经过漫长过程成熟起来的,这不利于学生正确数学思维方法的形成。但是,数学史却可以做到这一点。数学史向学生呈现的不仅仅是明确的数学知识,而更多的是传授相应知识的创造过程,这就让学生对数学知识的产生有一个较为清晰的认识了。通过数学史我们可以认识到数学的本原与特质,从这一个层面上看,在数学史的引领之下,师生间可以创造出一种双向的、探索与研究的课堂气氛。
这样的例子有很多,例如,我们可以再讲数形结合思想时,可以先向学生说在几何学中有很多长期不能解决的问题,例如立方倍级、三等分任意角、化圆为方等问题,直到十七世纪后半叶,法国数学家笛卡儿以坐标为桥梁、在点与数之间、曲线与方程之间建立起对应的关系,用代数方法研究几何问题,从而创立了解释几何学,至今也得到广泛的应用。又如,牛顿和莱布尼兹在在古代数学家研究积分学的思想成果上,为解决许多科学的问题创办了微积分学。
3.4数学史有能培养学生不畏艰险勇往直前的探索精神
一般来说,学生学习的数学课本呈现给学生的都是系统的、现成的知识,并未能体现到数学家们前赴后继、劈荆斩刺地获得数学知识的艰辛,数学家所经历的艰辛而漫长的道路对学生来说似乎只是种形式。但数学这一学科之所以有今天的繁荣昌盛,全赖一代又一代的数学家不畏艰险勇往直前的去摸索、去奋战。通过学习数学史,学生可以明白到这一个道理,知道这些数学家是经过怎样的艰辛奋斗、怎样的排除万难、去把知识一点一滴的积累下来给后来者一个更完善的知识环境,他们就会发现目前学习数学所经历的困难是微不足道的,这样也就不会被学习过程中所遇到的挫折所打倒。此外,通过数学史学生也会发现从古到今不少着名数学家也犯过如今看来非常可笑的错误,数学家跟他们一样也会犯错,那么他们就能正确看待在学习数学过程中所犯过的错误,从而树立起学习数学的自信心。
以计算圆周率∏为例子,古今中外,许多的人都致力于∏的研究与计算。为了计算出圆周率的越来越好的近似值,无数的数学家为这个神秘的数贡献了一生的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算∏的世界纪录频频创新。德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,用古典的方法计算到圆的内接正262边形,在1609年得到了∏的35位精度值,以至于∏在德国被称为Ludolph数;英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。虽然后来又有了计算机,但人们对圆周率还是兴趣盎然,因为数学家们认为对∏的研究可以说明人类的认识是无穷无尽的。在教学圆周率的时候,向学生讲述适当的史料知识,这对培养学生不畏艰险勇往直前的探索精神是有积极意义的。历代数学家在困难面前劈荆斩刺、为数学的通天塔添砖加瓦,他们崇高的理想、坚定的信念、顽强的斗志、勇往直前的探索精神是教育学生最好的模范。
4如何在中学数学教学中渗透数学史
乔治.屈维廉说过:“历史并没有真正的科学价值,它的真正目的乃是教育别人。”作为一个准数学老师,我们不只是应该是去学会数学史,更应该是学会运用数学史。教师如果在数学课堂中,结合所教授的内容,有目的、有计划地融入数学史,不仅可以教学内容更加的丰富饱满,还可以对学生起到潜移默化的作用,使学生医生受益。那如何在中学数学教学中渗透数学史呢,下面给大家介绍几种常见的方法:
4.1巧妙利用数学史名题教学
数学史发展的历史长河中,数学历史名题对数学知识的补充、发展都起过重大的作用,如《孙子算经》里面的“鸡兔同笼”问题、古希腊的三大几何难题、哥德巴赫猜想等等,这些历史名题的提出一般都具有一定的现实背景并对实质性的数学方法有所揭示,这对学生理解数学内容和思想方法有极其巨大的帮助。
浅谈数学史在中学数学教学的作用通过教师对具有开放性的历史名题的展示,一方面可以让学生理解到,数学这个领域是运动着的、是活跃的、未完成的,它不是一个静止的、封闭的系统。另一方面,学生还能够认识到数学正是在猜想、错误、中发展进行的,数学进步是对传统观念的革新,从而激发学生的思维,使他们感受到,抓住适当的、有价值的数学问题将是多么激动人心的事情。
例如,初等几何着名定理勾股定理的证明,这个定理以它的简洁性和应用的广泛性,吸引了很多人。由于年代久远,已经很难知道谁是第一个证明勾股定理的人了,但它的证明方法各式各样,高达三百多种,其中有赵爽证明法、美国总统加菲尔证明法、欧几里得证明方法、利用相似三角形证明方法等等。向学生讲述勾股地理证明的历史,可以使单调无趣的证明过程变得趣味盎然而又富有人性化,跟重要的是让学生觉得他们是在自己探索知识,从而让学生更加积极地参与其中,历史上这么多名人去证明勾股地理,现在自己也跟那些名人一样在研究同样的问题,这个问题就变得不一样了。即使历史上已有人用同样的方法做出过证明,但当学生独自去解决掉勾股定理的证明时,他心里面所产生的成就感和自豪感是其他成功的获得所不能比拟的,而这种成就感也会使学生从此对数学产生浓厚的兴趣。
4.2利用数学史进行新课引入
俗话说:“千里之行,始于足下”。好的开始是成功的一半,教师可以运用数学史来进行新课的导入,引发学生的注意力,把学生的思路从上一节课的知识中引导这一节课中,达到上课的最佳心理状态,从而提高学习的效率。在数学课堂的开端教师向学生适当地讲授一些数学知识产生的故事、传说不仅可以引起学生对知识点的直接兴趣,还可以让学生见识到知识的产生发展过程。当然,要做到这一点老师就要经过精心的设计,力求做到引人入胜,统摄全局,引起共鸣。
举个例子,在讲等比数列时,教师可以先向学生讲述古印度国王国王用麦子奖赏智者的故事:传说古代印度有个国王非常喜欢国际象棋,一天,一个智者与国王下棋并赢了国王,国王说可以满足他的一个要求,智者提出的要求就是要国王在棋盘的第1个格子里放上1颗麦粒,第2个格子放上2颗麦粒,第三个格子放4粒麦粒,如此类推,后一个格子里放的麦粒数都是前一个格子里放的麦粒的2倍(国际象棋棋盘有64个格子),希望国王把这些麦子赏赐给他.国王想这还不容易,就欣然同意了他的要求。经过计算,发明者要求的麦粒总数就是2的64次方减1,这个数字非常大。用这个故事引入等比数列新课,相信学生的注意力都会被吸引过来,而且还能培养学生学习数学的兴趣,机器学生对新知识的探究欲望,让学生情绪高涨,从而产生良好的课堂气氛。
4.3利用数学史设置课堂结束环节
一节课上得好不好,课堂的结束环节很重要。课堂结束这一环节主要是实现本节课的教学升华,辅助学生对知识点进行归纳整理、挖掘提炼,让他们理清教学过程的整体思路脉络,掌握知识的深处内涵。除此以外好的课堂结束环节还可以起到承上启下的作用,让学生对下节课的内容产生兴趣,为下一节课的顺利进行做铺垫。如果这个时候教师能好好利用数学史知识来结束本节课的内容,这样就不仅可以吸引学生的兴趣,还可以启发学生的想象力,探究数学知识的奥秘。不仅如此,由于每个学生学习的水平和需要都不尽相同,用数学史来作为课堂的结束环节,可以让不同基础的学生得到不同程度的发展,使扎实掌握好基础的学生继续深入探究,也给相对落后的学生启发。
譬如这样,陈景润的老师在“整数的性质”这堂课结束的时候跟学生说:“在自然科学当中数学处于皇后的地位,皇后头上的皇冠就是数论。而哥德巴赫猜想,则是这顶皇冠上最璀璨夺目的明珠,为了这了明珠许多数学家倾尽了毕生心血,不知将来在座各位谁能把这颗明珠摘下来呢?”就是这位老师在课堂结束的时候用了数学史的知识做结束环节,记起来学生的探究的种子,后来就有了这个世界上攻克“哥德巴赫猜想”的第一个人。
4.4利用数学史讲授知识系列
每一系列的数学知识都是经过漫长的历史演变逐渐发展形成的,其中每个环节的知识的获得都是以一代代人无数的精力和挫折为代价的,数学教学应做到历史与逻辑的统一,寻找恰当的时机让学生像当年的数学家一样经历和体验数学创造的必要性和创造的基本方法。在数学教学过程中,教师可以把学生学习过的知识当成一个环节,各个环节用历史发生的时间和事件串连成一个知识体系,向学生系统地论述各环节知识产生的过程和发展,在教学进度的允许下,教师可以开展适当的专题性学习,适当向学生介绍一些数学史知识,如知识的背景、知识的影响力和现实生活中的实际应用等等,把学生头脑中的数学知识进行梳理,让这些知识形成一个相对清晰完整的系统,这样会起到1+1﹥2的效果了。
以数的发展历史为例子,在生产活动中,人们为了计量物品的个数,产生出自然数这一概念,在对物品的分割中产生了分数,为了表示有相反意义的量时引入了正负数,在对连续的量进行度量时,又引入了无理数,从负数不能开方出发引入了虚数,并把实数扩展到复数。于是就形成了数的理论发展概况:自然数——整数——有理数——无理数——实数——复数,让学生一目了然,对培养学生知识是变化发展的观点十分有利。
4.5利用数学史开展探究式学习
数学知识的活动都是经过观察、实验、交流、分析、综合、推理、总结得出来的,但我们的教科书上鲜少反映这一漫长而复杂的过程,教师可以以数学史为载体,对某一概念形成的几个关键特征进行分析,在学习该概念时,思考学习者可能会感到一定的困难,他们只理解到概念的表面意思,对概念的深层意思却并不理解,但如果配合学生认知规律去给学生讲解数学概念的发展历程,并对这一数学概念进行拆开理解,再进行知识的序列化重构,然后在这样的基础上实施教学,让学习者在教师的引领作用下,重现数学家们在概念形成所经历的几个关键的探究活动过程,同时教师进行适当指导,让学生经历思维的原过程,不仅能丰富学生学习内容还能增加学生对数学史的兴趣,在探索交流的氛围中获得知识,通过喜欢数学史进而喜欢数学。
在探究性学习中,数学史还有一个非常普遍的作用,就是创建探究性学习的情景,而创设的请进要考虑到各方面的因素,创设的情景要有吸引性、真实性、切合学生的生活实际,又要考虑到知识产生发展的规律性和顺序性。那么运用数学史来进行探究性活动情景的创设就再适合不过了,这样既有利于探究性学习的开展又起到对学生的文化熏陶作用。例如,教师在教授“等可能性事件”知识的时候,可以向学生讲述当年今日在数学界所发生的事情,这一系列的数学事件都发生在这一天,这仅仅是一种巧合还是一种正常现象呢?
5小结
综上所述,数学史不仅是在学生对学习数学兴趣的激发,数学知识的理解和数学思维方法的掌握有所帮助以外,它对培养学生不畏艰险勇往直前的探索精神的过程中所起的作用不应忽视,在数学教学中利用数学史资源促进教育教学更是有必要的,如果运用的好,它可以使数学课更加的生动而富有感染力。理论应该是为实践而服务的,我们可以通过各种方法去渗透数学史,其中包括:巧妙利用数学史名题教学、利用数学史进行新课引入、利用数学史设置课堂结束环节、利用数学史讲授知识系列、利用数学史开展探究式学习,以上是我个人心得体会,由于水平有限,如有不足之处,请多多包涵。

❺ 理解并阐述数学家对数学发展的重要作用

数学是一种应用非常广泛的学科.伟大的数学家华罗庚曾经说过:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生活之迷、日月之繁,无处不用数学.”这应该算得上是对数学与生活的关系的完美阐述了吧!新课程标程十分强调数学与现实生活的联系,不仅要求数学教学必须从学生熟悉的生活情景和感兴趣的事物出发,为他们提供观察和操作的机会,使学生有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到数学就在身边,感受到数学的趣味,而且还要激发学生运用数学解决实际问题的兴趣,培养探索精神、应用意识和实践能力,做到学以致用,进一步体会数学的作用和价值,感受到数学的魅力.锻炼思维,无论日后从事哪方面的工作
严密的逻辑思维都是相当有帮助的
数学是基石

❻ 传统文化与数学的关系

数学是一门客观、精确的学科,蕴藏着极其丰富的思想性,中华优秀传统文化博大精深、源远流长,是我们的国粹,是我们炎黄子孙的精神财富,如何将数学与传统文化教育相结合,充分发挥传统文化独特而强大的功能,引导学生在感受、感悟我国丰富的民族数学文化遗产的过程中,同时培养数学文化素养、开发智能?是每一位数学教师都在思考的问题,我们主要做了以下几个方面的尝试:
一、走近数学名人
运用教材中反映我国历代数学家对数学研究作出巨大贡献的实例教育学生,如:刘徽在对《九章算术》中一些问题的补充证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π≈3.14的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。通过研究还知道了刘徽一生刚直不阿,在任何条件下都敢于发表自己的见解,敢于修正前人的错误。他在研究数学的过程中,不仅重视理论研究,而且也很注意理论联系实际。他的治学精神是大胆、谨慎、认真。他对自己还没有解答的问题,把自己感到困难的地方老老实实地写出来,留待后人去解决。刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人。通过这样对古代数学家、名人的研究,使学生懂得我国不但有灿烂的古代文明,我国人民也富有聪明才智。在原古落后的时代,便有如此伟大的数学家,有如此伟大的数学成就,而今科学这样高度发达,我们若不努力学习,真是愧对古人。从而让学生以他们为榜样,从小树立起为国家富强、为民族振兴而发奋读书、顽强拼搏、积极奉献的责任感。
二、搜集数学史料
教材中的“你知道吗?”其中多为数学史料,介绍我国古代数学家对数学研究的突出贡献。教师在教学中,适时地介绍一些数学史知识,充分挖掘出教材中蕴含的数学史料并将这些内容与数学课堂教学紧密联系起来,不但能丰富学生的学习内容,还能引起学生学习的主动性,培养学生的民族自豪感和责任感,从而达到向学生进行爱国主义教育的目的。如在学习《圆的周长》时,学生通过实验发现圆的周长总是直径的3倍多一些,这时教师适时引出圆周率,然后向学生介绍,很早以前,人们就开始研究圆周率到底是多少。约2000前,中国的古代数学着作里《周髀算经》中就有“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,中国有一位伟大的数学家和人文学家祖冲之。他计算出圆周率应在
3.1415926和3.1415927之间,成为世界上第一个把圆周率的值的计算精确到7位小数的人。他的这项伟大成就比国外数学家得出这样精确数值的时间,至少要早一千年!通过这段话的学习激起学生强烈的民族自豪感。这时再向学生布置一项拓展作业:查阅资料,了解圆周率的历史、古人圆周率的计算方法、圆周率的计算历史、祖冲之的生平及故事等,利用专门时间组织学生汇报交流。在这个过程中,学生不仅了解了我国古代数学家计算圆周率的方法和圆周率的计算历史,更体会到了我们古代数学家的伟大和他们所创造的辉煌的历史成就。再比如学习《圆的认识》,向学生介绍早在两千多年前,我国古代就有对圆的精确记载,墨子是我国伟大的思想家,在他的一部着作中有这样的描述“圆、一中同长也”, 这个发现比西方整整早了1000多年。我国古代对于圆的记载还远不止这些。在《周髀算经》里有这么一句话“圆出于方,方出于矩”。 通过这样的介绍和研究,激起学生强烈的民族自豪感,达到了向学生进行爱国主义教育的目的,从而让学生从小树立起为国家富强、为民族振兴而发奋读书、顽强拼搏、积极奉献的责任感。
三、欣赏传统图案
我国传统图案种类繁多,内容丰富,它既代表着中华民族的悠久历史,社会的发展进步,也是世界文明艺术宝库中的巨大财富。从那些变幻无穷,淳朴浑厚的传统图案中,我们可以看到各个时代的工艺水平和中华民族一脉相承的文化传统。在数学教材第九册《圆》一单元,展示给学生的有战国时期的外圆内方铜镜、铜钱、玉璧、花瓣状门洞、福建土楼等等一些古代物品图案。在学习之前,教师把全班同学分成五个小组,分别去查找有关资料,每副图案的出处,年代、以及代表的含义或者所蕴含的数学思想。学生积极参与其中,收到了不错的效果。经过对资料的了解和观察,学生发现图案的设计用到了数学知识中的旋转和对称的手法,力求体现完美和谐,追求美好的生活。学生在欣赏精美绝伦图案的同时,感受到中国灿烂的纺织绘画艺术,感受到了数学中的美。
四、了解古代测量工具
在六年级上册第二单元《位置与方向》,主要通过路线图让学生学会辨认路线图,并会画出路线图。说起辨认方向,学生最先可以想起辨认方向的工具——指南针。作为古代四大发明之一的“指南针”,早已为我们所熟知,但关于“指南针”一些背后的历史,我们的学生却知之甚少。于是,结合本单元内容,教师设计了两项内容:(一)、现在我们认识到的方位名词有:东、南、西、北。那么,古代表示方位的名词又有那些呢?通过调查,学生了解到:古代除了用东南西北等表示地理方位以外,大致还有以下10种方法:1.以阴阳表示、2.以五行表示3、以五色表示4.以四季表示 5.以四兽表示6.以左右表示7.以八卦表示8.以数字表示 9.以天干地支表示10.以星宿表示。关于指南针。1、指南针的历史故事2、指南针的起源3、指南针的发明4、指南针的发展通过这两项内容的了解,大大丰富了学生的知识储备,特别是对古代方位词的认识,以及对指南针的发明、演变过程的研究,大大提高了他们继续探究的兴趣,初步为学生揭开了古代传统的神秘大门。
总之,在数学课堂中渗透传统文化教育方法也应是多种多样、丰富多彩的,让传统文化渗透到教学实践中,努力让学生在学习数学的过程中,受到中华传统文化的感染,产生共鸣,体会到传统文化的价值所在,为今后的成长和发展奠定坚实的基础。

❼ 如何在数学教学中渗透数学史

数学史对数学教育的作用,已经得到各国教育界的普遍重视。《普通高中数学课程标准(实验)》指出,应尽可能结合高中数学课程的内容,介绍一些对数学发展起重大作用的历史事件和人物,反映数学在人类社会进步,人类文明建设中的作用,同时也反映社会发展对数学的促进作用。那么在现行的中数学教学中,如何将数学史融入到课堂教学中去呢?本文按照课堂教学的几个基本环节来具体谈谈怎样将数学史融入中学数学课堂中。
1.导入新课
利用情境导入融入数学史激发学生的学习兴趣。爱因斯坦说过:“兴趣是最好的老师。”在讲解一个难以理解的新知识以前,可以通过添加一个简短有趣的小故事引入这一问题。比如在学习等比数列的知识时,首先引入棋盘上的麦粒这一故事:古代印度的舍罕王,打算重赏国际象棋的发明者――宰相西萨。西萨向国王请求说:“陛下,我想要向你要一点粮食,然后将他们分给贫困的百姓。”国王高兴的同意了,西萨说:请您派人在这张棋盘的第一个小格子内放上一粒麦子,在第二格放两粒,第三格放四粒,第四格放八粒,以此类推每一格内的数量比前一格增加一倍。陛下啊,把这些摆满棋盘上说有64格的麦粒都赏赐给您的仆人吧!我只要这些就够了。对于这样一个听上去微不足道的要求,国王和大臣们听了都暗自发笑,聪明的同学们,你们能算出西萨究竟要了多少麦粒吗,这一故事,既可以激发学生的学习兴趣,自发积极地动脑动手思考,又可以提前让学生接触到数列的本质东西。对于接下来的学习大有裨益。
再比如在学习对数以前,可以先介绍一下数学家John Napier精编了可供实用的对数表,对数的发明,解决了许多天文学的复杂计算问题,在计算器和计算机发明以前,它持久的用于测量,航海和其他数学分支中。在学习对数以前,加入对数发明不易的内容了解,能让学生更加珍惜这数学家的来之不易的成果,进而在学习的过程中,更加努力。
2.学习新知。
在学习新的知识过程中,可以适当加入与之相关的古代数学家是怎样解决该数学问题的。例如在学习勾股定理的过程中,可以引入三国时期吴国数学家赵爽给出的证明:
赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。
通过介绍赵爽的证明方法可以开拓学生的思维,也能加深他们对勾股定理的认识。
可以在教学过程中再加上几种证明方法,一方面巩固已经学习的知识,另一方面启发学生从多个角度思考如何证明勾股定理,开拓学生的思维。
3.巩固练习
巩固练习阶段对新知识的获得是必可可少的阶段,当然,在此阶段内可以适当融入求解数学史中的问题,比如在学习了一元一次方程的求解以后,在课堂上可以给学生出几道古文数学题。
“隔墙听得客分银,不知人数不知银。
七两分之多四两,九两分之少半斤。
(注:在古代一斤是十六两,半斤是八两)
教学时,师生共同理解古诗文:有几个客人在房间里分银子,每人分七两,最后多四两,每人分九两,最后少八两,问有几个人,有几两银子
我们可以将数学史中的一些能用所学知识解决的问题列出来,让学生运用所学知识求解,这样学生在求解过程中能切身体会到古往今来的数学方法一脉相承,我们既可以学习数学家的思想,来思考现在所遇到的难题,又可以用自身所学的知识,去解决古时候记录的一些问题。
4.布置作业
在课堂教学结束后,给学生布置作业,可以为学生提供参考文献,引导学生阅读课外读物,例如,各种专题论述、人物介绍、学科进展等,开阔学生眼界,启发和引导学生进行正确的阅读,继而进行自学,使学生终生受益。比如我们在学完数列这一部分内容后,可以给学生留下作业,回去查查什么是斐波那契数列,斐波那契数列有什么应用价值,什么是芝诺悖论“阿基里斯追龟问题”等等。
数学史融入中学数学课堂,并不是漫无目的,生搬硬套的强加进去的,而是经过精挑细选,仔细斟酌之后为授课所用,在进行数学史的讲解时,我们应该尊重历史,尊重事实,既不可以随意编造,也不能无端拔高,更不能怀有狭隘的爱国心,要充分吸收来自世界的数学史,为教学所用,使中学数学课堂生动活泼,更加富有生命力。

❽ 数学史对数学教育意义有什么意义

数学史既属史学领域,又属数学科学领域,因此数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段;

在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。

数学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。

通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。

(8)数学课中引入古代数学家有什么意义扩展阅读:

数学史的研究范围:

按研究的范围又可分为内史和外史:

1、内史:从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;

2、外史:从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。

数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。

从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。

从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。

阅读全文

与数学课中引入古代数学家有什么意义相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1301
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1026
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:979
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1654
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1060