Ⅰ 初中数学所有方程类型 要全哦
1、反比例函数:y=k/x
2、一次函数:y=kx+b(k≠0)正比例函数(y=kx)是一次函数的特殊形式(即当b=0时)
3、二次函数:y=ax²+bx+c(a≠0)
4、三角函数:在一个直角三角形中,sinα=对边/斜边,cosα=邻边/斜边,tanα=对边/邻边,cotα=邻边/对边。
初中的函数大概就这些了,希望能帮到你。
Ⅱ 初中数学方程分类
初中数学方程分为:
一元一次方程,一元二次方程,二元二次方程组。
Ⅲ 初中数学课程都有哪几种方程式
一元一次方程(貌似是小学学的),二元一次方程,二元一次方程组,一元二次方程,一元二次方程组.
我现在是初三以前的记不太清..到现在大概是这么些了..应该下个学期还有一课的..
正比例函数和反比例函数算不算啊?还有抛物线..
Ⅳ 初中数学的方程有哪些
初中数学的方程有一元一次方程,分式方程,二元一次方程,二元一次方程组,三元一次方程组,绝对值方程,一元二次方程等等,这些基本上都涉及到了,不过重点在分式方程跟一元二次方程的解法。
Ⅳ 初一数学解方程有哪些
初一数学是一元一次方程,只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,一元一次方程只有一个根。
解方程的步骤:
1、有分母先去分母。
2、有括号就去括号。
3、需要移项就进行移项。
4、合并同类项。
5、系数化为1求得未知数的值。
6、开头要写“解”。
解方程依据
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘。
2、等式的基本性质:
(1)等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。
(2)等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式(不为0)。
Ⅵ 初中数学 学过什么种类的方程
一元一次方程 例:x+3x=8
二元一次方程组 例:/x+y=8 (/
\x-y=4 \ 是大括号)
一元一次不等式 例:x+5x≥10(还会有其他条件)
一元一次不等式组(拓展)
三元一次方程组(拓展)
Ⅶ 初中解方程有哪些呢
初一数学是一元一次方程,只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,一元一次方程只有一个根。
解方程的步骤:
1、有分母先去分母。
2、有括号就去括号。
3、需要移项就进行移项。
4、合并同类项。
5、系数化为1求得未知数的值。
6、开头要写“解”。
列方程解应用题步骤:
1、实际问题(审题,弄清所有已知和末知条件及数量关系)。
2、设末知数(一般直接设,有时间接设),并用设的末知数的代数式表示所有的末知量。
3、找等量关系列方程。
4、解方程,并求出其它的末知条件。
5、检验(检验是否是原方程的解、是否符合实际意义)。
6、作答。
重点:审题。关键:用设的末知数的代数式表示所有的末知量,找等量关系。
Ⅷ 初中数学解方程必背公式汇总
初中数学解方程是很多人都比较重视的,下面我就整理了,供大家参考。
乘法与因式分解:
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式:
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解:
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1*X2=c/a注:韦达定理
判别式b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
两角和公式:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式:
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式:
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积:
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和:
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程:(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程:x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程:y2=2px
y2=-2px
x2=2py
x2=-2py
直棱柱侧面积:S=c*h
斜棱柱侧面积:S=c'*h
正棱锥侧面积:S=1/2c*h'
正棱台侧面积:S=1/2(c+c')h'
圆台侧面积:S=1/2(c+c')l=pi(R+r)l
球的表面积:S=4pi*r2
圆柱侧面积:S=c*h=2pi*h
圆锥侧面积:S=1/2*c*l=pi*r*l
弧长公式:l=a*r,a是圆心角的弧度数r>0
扇形面积公式:s=1/2*l*r
锥体体积公式:V=1/3*S*H
圆锥体体积公式:V=1/3*pi*r2h
斜棱柱体积:V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式:V=s*h
圆柱体:V=pi*r2h
Ⅸ 初中数学内容有什么涉及哪些公式
初中数学主要包含代数和几何两部分。
1、代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。初等代数一般在中学时讲授。代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。
2、几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。
(9)初中数学学的方程有哪些扩展阅读:
1、代数部分主要包含:
实数,代数式(整式,二次根式),方程(一元一次方程,二元一次方程组,一元二次方程,分式方程),不等式,函数(正比例函数,一次函数,反比例函数,二次函数)。
2、几何部分主要包含:
几何初步(线以角,平行线),三角形(三角形认识及性质,直角三角形,等腰三角形,全等三角形,相似三角形,锐角三角函数),四边形(平行四边形,矩形,菱形,正方形),圆,立体图形基础,图形三大变化(平移,旋转,对称)。
如果觉得小蜜书说的实用 就戳戳大拇指鼓励我吧!
Ⅹ 初中数学方程式有哪些
方程式是初中数学的基础,学生们一定要扎实掌握,我整理了一些重要的方程式。
b2-4ac=0,注:方程有两个相等的实根
b2-4ac>0,注:方程有两个不等的实根
b2-4ac<0,注:方程没有实根,有共轭复数根
初中周长公式常见的有以下几类:
长方形周长=(长+宽)×2,C=2(a+b)
正方形周长=边长×4,C=4a
圆周长=直径×圆周率,C=2πr
初中几何面积公式常见的有以下几类:
长方形面积=长×宽,S=ab
正方形面积=边长×边长,S=a²
三角形面积=底×高÷2,S=ah/2
平行四边形面积=底×高,S=ah
梯形面积=(上底+下底)×高÷2,S=1/2(a+b)h
1、两角和公式
sin(A+B)=sinAcosB+cosAsinB,sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB,cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB),tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA),ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
2、倍角公式
tan2A=2tanA/(1-tan2A),ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
3、半角公式
sin(A/2)=√((1-cosA)/2),ain(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2),cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)),tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)),ctg(A/2)=-√((1+cosA)/((1-cosA))
4、和差化积
2sinAcosB=sin(A+B)+sin(A-B),2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B),-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2,cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB,tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB,-ctgA+ctgBsin(A+B)/sinAsinB
以上是我整理的初中数学公式,希望能帮到你。