导航:首页 > 数字科学 > 如何快速做数学填字题

如何快速做数学填字题

发布时间:2022-09-26 03:12:31

⑴ 怎么快速解数学题

掌握数字特性法的关键,是掌握一些最基本的数字特性规律。(下列规律仅限自然数内讨论)

(一)奇偶运算基本法则

【基础】奇数±奇数=偶数; 偶数±偶数=偶数;偶数±奇数=奇数;奇数±偶数=奇数。

【推论】1.任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。

2.任意两个数的和或差是奇数,则两数奇偶相反;和或差是偶数,则两数奇偶相同。

(二)整除判定基本法则

1.能被2、4、8、5、25、125整除的数的数字特性能被2(或5)整除的数,末一位数字能被2(或5)整除;能被4(或 25)整除的数,末两位数字能被4(或 25)整除; 能被8(或125)整除的数,末三位数字能被8(或125)整除;一个数被2(或5)除得的余数,就是其末一位数字被2(或5)除得的余数;一个数被4(或 25)除得的余数,就是其末两位数字被4(或 25)除得的余数;一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数。

2.能被3、9整除的数的数字特性能被3(或9)整除的数,各位数字和能被3(或9)整除。一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。

3.能被11整除的数的数字特性能被11整除的数,奇数位的和与偶数位的和之差,能被11整除。

(三)倍数关系核心判定特征 如果a∶b=m∶n(m,n互质),则a是m的倍数;b是n的倍数。如果x= y(m,n互质),则x是m的倍数;y是n的倍数。如果a∶b=m∶n(m,n互质),则a±b应该是m±n的倍数。

【例22】(江苏2006B-76)在招考公务员中,A、B两岗位共有32个男生、18个女生报考。已知报考A岗位的男生数与女生数的比为5:3,报考B岗位的男生数与女生数的比为2:1,报考A岗位的女生数是( )。

A.15B.16C.12D.10 [答案]C

[解析]报考A岗位的男生数与女生数的比为5:3,所以报考A岗位的女生人数是3的倍数,排除选项B和选项D;代入A,可以发现不符合题意,所以选择C。

【例23】(上海2004-12)下列四个数都是六位数,X是比10小的自然数,Y是零,一定能同时被2、3、5整除的数是多少?( ) A.XXXYXX B.XYXYXY C.XYYXYY D.XYYXYX [答案]B

[解析]因为这个六位数能被 2、5整除,所以末位为0,排除A、D;因为这个六位数能被3整除,这个六位数各位数字和是3的倍数,排除C,选择B。

【例24】(山东2004-12)某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少?( ) A.33 B.39 C.17 D.16 [答案]D

[解析]答对的题目+答错的题目=50,是偶数,所以答对的题目与答错的题目的差也应是偶数,但选项A、B、C都是奇数,所以选择D。

【例25】(国2005一类-44、国2005二类-44)小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是多少元?( ) A.1元B.2元C.3元D.4元 [答案]C

[解析]因为所有的硬币可以组成三角形,所以硬币的总数是3的倍数,所以硬币的总价值也应该是3的倍数,结合选项,选择C。

[注一] 很多考生还会这样思考:“因为所有的硬币可以组成正方形,所以硬币的总数是4的倍数,所以硬币的总价值也应该是4的倍数”,从而觉得答案应该选D。事实上,硬币的总数是4的倍数,一个硬币是五分,所以只能推出硬币的总价值是4个五分即两角的倍数。

[注二]本题中所指的三角形和正方形都是空心的。

【例26】(国2002A-6)1998年,甲的年龄是乙的年龄的4倍。2002年,甲的年龄是乙的年龄的3倍。问甲、乙二人2000年的年龄分别是多少岁?( ) A.34岁,12岁B.32岁,8岁C.36岁,12岁D.34岁,10岁 [答案]D

[解析]由随着年龄的增长,年龄倍数递减,因此甲、乙二人的年龄比在3-4之间,选择D。

【例27】(国2002B-8)若干学生住若干房间,如果每间住4人则有20人没地方住,如果每间住8人则有一间只有4人住,问共有多少名学生?( )。 A.30人B.34人C.40人D.44人[答案]D

[解析]由每间住4人,有20人没地方住,所以总人数是4的倍数,排除A、B;由每间住8人,则有一间只有4人住,所以总人数不是8的倍数,排除C,选择D。

【例28】(国2000-29)一块金与银的合金重250克,放在水中减轻16克。现知金在水中重量减轻1/19,银在水中重量减轻1/10,则这块合金中金、银各占的克数为多少克?( ) A.100克,150克B.150克,100克C.170克,80克D.190克,60克[答案]D

[解析]现知金在水中重量减轻1/19,所以金的质量应该是19的倍数。结合选项,选择D

【例29】(国1999-35)师徒二人负责生产一批零件,师傅完成全部工作数量的一半还多30个,徒弟完成了师傅生产数量的一半,此时还有100个没有完成,师徒二人已经生产多少个?( ) A.320 B.160 C.480 D.580 [答案]C

[解析]徒弟完成了师傅生产数量的一半,因此师徒二人生产的零件总数是3的倍数。结合选项,选择C。

【例30】(浙江2005-24)一只木箱内有白色乒乓球和黄色乒乓球若干个。小明一次取出5个黄球、3个白球,这样操作N次后,白球拿完了,黄球还剩8个;如果换一种取法:每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。问原木箱内共有乒乓球多少个?( ) A.246个B.258个C.264个D.272个 [答案]C

[解析]每次取出7个黄球、3个白球,这样操作M次后,黄球拿完了,白球还剩24个。因此乒乓球的总数=10M+24,个位数为4,选择C。

【例31】(浙江2003-17)某城市共有四个区,甲区人口数是全城的,乙区的人口数是甲区的 ,丙区人口数是前两区人口数的 ,丁区比丙区多4000人,全城共有人口多少万?( ) A.18.6万B.15.6万C.21.8万D.22.3万 [答案]B

[解析]甲区人口数是全城的(4/13),因此全城人口是13的倍数。结合选项,选择B。

【例32】(广东2004下-15)小平在骑旋转木马时说:“在我前面骑木马的人数的 ,加上在我后面骑木马的人数的 ,正好是所有骑木马的小朋友的总人数。”请问,一共有多少小朋友在骑旋转木马?( ) A.11 B.12 C.13 D.14 [答案]C

[解析]因为坐的是旋转木马,所以小平前面的人、后面的人都是除小平外的所有小朋友。而除小明外人数既是3的倍数,又是4的倍数。结合选项,选择C。

【例33】(广东2005上-11)甲、乙、丙、丁四人为地震灾区捐款,甲捐款数是另外三人捐款总数的一半,乙捐款数是另外三人捐款总数的 ,丙捐款数是另外三人捐款总数的,丁捐款169元。问四人一共捐了多少钱?( ) A.780元B.890元C.1183元D.2083元 [答案]A

[解析]甲捐款数是另外三人捐款总数的一半,知捐款总额是3的倍数;乙捐款数是另外三人捐款总数的 ,知捐款总额是4的倍数;丙捐款数是另外三人捐款总数的,知捐款总额是5的倍数。捐款总额应该是60的倍数。结合选项,选择A。

[注释] 事实上,通过“捐款总额是3的倍数”即可得出答案。

【例34】(北京社招2005-11)两个数的差是2345,两数相除的商是8,求这两个数之和?( ) A.2353 B.2896 C.3015 D.3456 [答案]C

[解析]两个数的差是2345,所以这两个数的和应该是奇数,排除B、D。两数相除得8,说明这两个数之和应该是9的倍数,所以答案选择C。

【例35】(北京社招2005-13)某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院共有多少个座位?( ) A.1104 B.1150 C.1170 D.1280 [答案]B

[解析]剧院的总人数,应该是25个相邻偶数的和,必然为25的倍数,结合选项选择B。

【例36】(北京社招2005-17)一架飞机所带的燃料最多可以用6小时,飞机去时顺风,速度为1500千米/时,回来时逆风,速度为1200千米/时,这架飞机最多飞出多少千米,就需往回飞?( ) A.2000 B.3000 C.4000 D.4500 [答案]C

[解析]逆风飞行的时间比顺风飞行的时间长,逆风飞行超过3小时,顺风不足3小时。飞机最远飞行距离少于1500×3=4500千米;飞机最远飞行距离大于1200×3=3600千米。结合选项,选择C。

【例37】(北京社招2005-20)红星小学组织学生排成队步行去郊游,每分钟步行60米,队尾的王老师以每分钟步行150米的速度赶到排头,然后立即返回队尾,共用10分钟。求队伍的长度?( ) A.630米B.750米C.900米D.1500米[答案]A

[解析]王老师从队尾赶到队头的相对速度为150+60=210米/分;王老师从队头赶到队尾的相对速度为150-60=90米/分。因此一般情况下,队伍的长度是210和90的倍数,结合选项,选择A 针对数学计算,

审题
判断问题的类型,找出问题的数学核心。拿到一个数学问题,首先要判断它属于哪一类问题?是函数问题,方程问题还是概率问题。它问的实质是什么?是证明,化简还是求值。只有这些大方向判断正确了,在解题时才能应付自如。
筛选一些基本原则
审题结束后,在自己的脑海里要会议一下所学过的解题的基本原则,再根据题目进行选择,选择一个自己认为最简单的原则进行解题。常见的原则有:
(1)模型化原则。把一个问题进一步抽象概括成一个数学模型。
(2)简单化原则。就是把一个复杂的问题拆成几个简单的问题,在进行解题。
(3)等价变换原则。(也即划归方法)把一个未解决的问题化成一个已知的情形,保持问题的性质不变。
(4)数形结合原则。把数学问题和几何问题巧妙的结合起来解题。
选择适当的做题技巧。
包括因式分解、配方法、待定系数法、换元法、消元法,不等式的放大缩小法以及例举法等等。这些方法要根据题目的要求不同灵活应用。认真检查
做完题后一定要养成检查的好习惯,这样才能保证自己做题的正确率。

一套试卷有二十几道题,有的题目还有多问。平均到每道题不够5分钟,时间确实是争分夺秒。

拒统计,高考试卷通常控制在2000个印刷符号左右,若以每分钟300个符号的速度审题,约需8分钟,考虑到有的题要读二遍以上,约需21-23分钟;书写解答主要是六道大题,约3、4个符号,有28分钟可以完成。这样,一共需要了40分钟,还剩下80分钟用于思考、草算、文字组织和复查检验。几乎是百米赛跑般的紧张。

1、 平时的高考复习,必须要有速度训练。为了给高档题留下较多的思考时间,选择、填空题应在1、2分钟内解决。时间太长,即使做对了也是“潜在丢分”,因为120分钟对150分,前面占用时间多了,到最后几题就没有时间做,因此,要提高解题的策略,防止“小题大做”

2、 在细心的基础上提高速度。高考数学的题目难度适中,一般地不会有太难的题。这就要求考生在另一方面下功夫,那就是仔细。高考数学考满分的并不罕见,但令人吃惊的,这些满分的同学并不是平时那些被认为是智力上出类拔萃的同学,而都是基本功扎实、认真仔细的同学。其实,细心本身就是一种能力,它需要长时间的培养,在复习阶段绝不要忘记培养自己仔细的习惯。具体作法是,认真对待每一道题、每一次小考、每一次模拟考试,决不容许自己由不认真而犯下任何错误。一旦出错,要总结经验,避免再犯。在认真的基础上就要讲求速度,高考题量比较大,覆盖面宽,没有速度是不行的,有人曾说,如果给我一天时间,那么高考数学卷我一定会拿满分。其实,速度本身就是高考考核项目之一,在每一次作业、小考、模拟考试中有意识加快解题速度对后面提高答题速度有很大帮助。查错勘误。平时收集好自己做过的作业、试卷等,复习过程中时常拿出来看,找到出错的地方,分析原因,吸取教训。时间允许的话,可以制订“错题集锦”,把学习中出现的错误随时登记注册,写明“病情”,查清“病因”,开好“处方”。这样经常查错勘误,警钟长鸣,才能吸取教训,刻骨铭心,粗枝大叶的毛病也会逐渐改掉。

3、 要进一步,就是要不断积累各种行之有效的解题方法及策略,学会从不同角度去观察问题,去分析问题,进而解决问题。这样在临战时就能入木三分,准确、迅速地把握住问题的实质,从而选择恰当的方法和策略。

⑵ 如何正确 快速做出数学应用题

如何提高中考数学的计算的正确率,以下有四种方法以供借鉴:
第一,要对计算引起足够的重视。
很多同学总以为计算式题比分析应用题容易得多,对一些法则、定律等知识学得比较扎实,计算是件轻而易举的事情,因而在计算时或过于自信,或注意力不能集中,结果错误百出。其实,计算正确并不是一件很容易的事。例如计算一道像37×54这样简单的式题,要用到乘法、加法的运算法则,经过四次表内乘法和四次一位数加法才能完成。至于计算一道分数、小数四则混合运算式题,需要用到运算顺序、运算定律和四则运算的法则等大量的知识,经过数十次基本计算。在这个复杂的过程中,稍有粗心大意就会使全题计算错误。因此,计算时来不得半点马虎。
第二,要按照计算的一般顺序进行。
首先,弄清题意,看看有没有简单方法、得数保留几位小数等特别要求;其次,观察题目特点,看看几步运算,有无简便算法;再次,确定运算顺序。在此基础上利用有关法则、定律进行计算。最后,要仔细检查,看有无错抄、漏抄、算错现象。
第三,要养成认真演算的好习惯。
有些同学由于演算不认真而出现错误。数据写不清,辨认失误。打草稿时不能按照一定的顺序排列竖式,出现上下粘连,左右不分,再加上相同数位不对齐,既不便于检查,又极易看错数据。所以一定要养成有序排列竖式,认真书写数字的良好习惯。
第四,不能盲目追求高速度。
计算又对又快是最理想的目标,但必须知道计算正确是前提条件,是最基本的要求,没有正确作基础的高速度是没有任何价值的。所以,宁愿计算的速度慢一些,也要保证计算正确,提高计算的正确率。

⑶ 数字九宫格填字游戏用什么方法最快解出来啊

就是数独吧
与填字游戏不同的是,玩“数独”游戏无需掌握任何一门特定的语言。事实上,从技术的角度来说,你甚至连数数都不用会。所有要做的就是将1到9这9个数字按一定秩序填入每行(从左至右)、每列(从上至下)、每个小九宫格(内有9个小方格),每个数字在每行、每列、每个小九宫格中只能出现一次。

做题时一个好的方法就是从小九宫格入手,更好的方法是研究一组小九宫格,寻找出成对的数字,由此你可推出第三个。举个例子:如果左上角的小九宫格中有数字7,左下角的小九宫格中也有7,则不难推出左中的小九宫格中7的位置。同样也以用这样的方法解出水平位置的数字。如果存在两种可能性。记录下来,然后继续。

每道题都可根据所提供的数字为线索,通过逻辑推理解答来。如果按照正确的解题方法,猜测就没有必要。一定要记:每道题只有一种答案。
先从已知数最多的横或竖或小方格做起,看这里可以填的是哪几个数,再一个一个地试(对比它的横或竖或小方格)。找到突破口是关键。 这样可以解决初级的数独题。

如果你做高级的题,也基本是这样的思考方法,但在有的地方你可能无法确定哪一个数是唯一的,就需要做一个假设。然后往下走,如果不发生矛盾,就成功了。如果发生了矛盾,就回到假设的地方,重新设另一个假设。再走下去。

⑷ 怎样才能在45分钟之内,以超高正确率完成高考数学选择、填空题

干货:浅析高考数学应试技巧:45分钟之内以超高正确率做完选择、填空!

导语

高考数学试题就三种题型:选择题,填空题,解答题。它们在考查学生能力方面有着不同的功能和作用。选择题在时间上的要求较高,要求学生有较强的直觉思维,估算能力。填空题对准确性的要求较高。后三道题入手并不难,但全对不易。而要在一场考试中取得好成绩,不仅要有扎实的基础知识,熟练的基本技能和在长期刻苦钻研中培养出来的数学能力,同时也取决于临场发挥。为此,我们要讲究一下应考策略。


正难则反,从以知条件出发较困难就从结论入手。用分析法,从肯定结论入手找充分条件是否和已知条件吻合;用反证法,从否定结论入手找出矛盾。以上所讲的是在考试中应该引起考生重视的一些技巧,掌握好应考的策略和技巧也许能够使 100 分的水平达到 120 分,反之就会使 100 分的水平只反映出 80 分。当然,这都要以 100 分的水平为前提。没有一定的基本知识和基本技能,技巧和策略也就无从谈起。而且这些方法和策略也不是一朝一夕就能掌握的,要在平时的复习和考试中时时注意,养成习惯。总之,我们希望的是在强调智力因素,能力因素的前提下,加强对非智力因素,非本质能力因素的研究,以能最大程度地提高学生的成绩。

得小题者、赢高考!

⑸ 做数学填空题的方法是什么

(1)不能凭映像做填空题,一般填空题中都有各式各样的陷阱,因为它是没过程的,所以跟选则题一样是考你的细心程度的!看清题目是第一步!
(2)做填空题第二步:猜、试、特殊情况(例如另x=1什么的),利用自己的感觉第一时间弄出答案,节省一点时间,在此同时别忘了思考一下是否猜、试出来的答案之外还有答案的可能性。
(3)第三步:第二步不成功没关系,认真将它当做简答题来做,但是需要注意的是一般填空题的难度不会很大(很多情况下都有简便方法),所以一旦你发现没有头绪或者觉的计算什么的太麻烦没关系,这只是方法不对而已,你可以换方法或者跳过,不可缠斗。
(4)最后检查的时候如果有时间的话可以用第三步去检查下第二步。
当然
选择题也适合!
我能说的就是这些哈,希望对楼主有所帮助……肺腑之言啊1

⑹ 求做数学题的技巧

1.选择题——“不择手段”
题型特点:
(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
解题策略:
(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。
(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。
(4)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。
(5)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。
(6)控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

2.填空题——“直扑结果”
题型特点:
填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等,不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。对考生独立思考和求解,在能力要求上会高一些。长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的解构,往往是在一个正确的命题或断言中,抽去其中的一些内容(即可以使条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活,在对题目的阅读理解上,较之选择题有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。
填空题的考点少,目标集中。否则,试题的区分度差,其考试的信度和效度都难以得到保证。这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因,有的可能是一窍不通,入手就错了;有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管他们的水平存在很大的差异。
解题策略:
由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:
一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;
二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;
三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

3.解答题——“步步为营”
题型特点:
解答题与填空题比较,同居提供型的试题,但也有本质的区别,首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括的准确;其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。

评分办法:
数学高考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷经验的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。
解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
①对题意缺乏正确的理解,应做到慢审题快做题;
②公式记忆不牢,考前一定要熟悉公式、定理、性质等;
③思维不严谨,不要忽视易错点;
④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
(2)何为“分段得分”:
对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。
对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的———会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤———对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。
对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。
③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。
④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
(3)能力不同,要求有变:
由于考生的层次不同,面对同一张数学卷,要尽可能发挥自己的水平,考试策略也有所不同。针对基础较差、以二类本科为最高目标的考生而言要“以稳取胜”——这类考生除了知识方面的缺陷外,“会而不对,对而不全”是这类考生的致命伤。丢分的主要原因在于审题失误和计算失误。考试时要克服急躁心态,如果发现做不下去,就尽早放弃,把时间用于检查已做的题,或回头再做前面没做的题。记住,只要把你会做的题都做对,你就是最成功的人!针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了最后两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。针对第一志愿为名牌大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。如果遇到不顺手的试题,也不必恐慌,可能是试题较难,大家都一样,此时,使会做的题不丢分就是上策。

⑺ 数学作业怎样写才快速

首先,所学知识要过关,基础要牢。其次,在做题时要用心,审题要慢一点,划清楚关键词,理清楚已知与未知的关系。这样到最后,做题就能很快,因为准备工作做得好,就基本不会有看了两三遍题还是不知道它在说什么的浪费时间的情况。希望能帮到你~

⑻ 做数学题的方法和技巧

中小学数学,还包括思维数学,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?文都教育建议家长们,培养孩子从小就习惯用这些思维和方法来解题!

形象思维方法

形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。

这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。

图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。

图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

列表法

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。

探索法

按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国着名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。

第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。

第二、定向猜测,反复实践,在不断分析、调整中寻找规律。

第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。

观察法

通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.”

小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出

乘法交换率:在乘法算式里,交换两个因数的位置,积不变。

“观察”的要求:

第一、观察要细致、准确。

第二、科学观察。科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。

验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。

抽象思维方法

运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

小学、中学数学要培养学生初步的抽象思维能力,重点突出在:

(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。

(2)思维方法上,应该学会有条有理,有根有据地思考。

(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。

(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地

推理。

对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

排除法

排除对立的结果叫做排除法。

排除法的逻辑原理是:任何事物都有其对立面,在有正确与错误的多种结果中,一切错误的结果都排除了,剩余的只能是正确的结果。这种方法也叫淘汰法、筛选法或反证法。这是一种不可缺少的形式思维方法。

解题技巧

选择题答题攻略

1、剔除法

利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2、特殊值检验法

对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

3、极端性原则

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

4、顺推破解法

利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

5、逆推验证法

将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

6、正难则反法

从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

7、数形结合法

由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8、递推归纳法

通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

9、特征分析法

对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

10、估值选择法

有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

填空题答题攻略

数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、数行结合法、等价转化法等。

1、直接法

这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

2、特殊化法

当填空题的结论唯一或其值为定值时,我们只须把题中的参变量用特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论。

3、数形结合法

借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。

4、等价转化法

通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。

⑼ 如何在数学考试中快速答题

一、启动思维 考前要摒弃杂念,排除一切干扰,提前进入数学思维状态。考前30分钟,首先看一看事先准备好的客观性题目常用解题方法和对应的简单例子(每法一例,不要过多),其次,闭眼想一想平时考试自己易出现的错误,然后动手清点一下考场用具,轻松进入考场。这样做能增强信心,稳定情绪,使自己提前。进入“角色” 二、浏览全卷 拿到试卷后,不要急于求成,马上作答,而要通览一下全卷,摸透题情。一是看题量多少,有无印刷问题;二是选出容易题,准备先作答;三是把自己容易忽略和出错的事项在题的空白处做个记号。 三、仔细审题 考试时精力要集中,审题一定要细心。要放慢速度,逐字逐句搞清题意(似曾相识的题目更要注意异同),从多层面挖掘隐含条件及条件间内在联系,为快速解答提供可靠的信息和依据。否则,一味求快,丢三落四,不是思维受阻,就是前功尽弃。 四、由易到难 就是先做容易题,后做难题。考试开始,顺利解答几个简单题目,可以产生“旗开得胜”的快感,促使大脑兴奋,有利于顺利进入最佳思维状态。考试中,要先做内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。遇到难题,要敢于暂时“放弃”,不要浪费太多时间(一般地,选择或填空题每个不超过2分钟),等把会做的题目解答完后,再回头集中精力解决它。 五、分段得分 近几年中考数学解答题有“入手容易,深入难”的特点,第一问较容易,第二、三问难度逐渐加大。因此,解答时应注意“分段得分”,步步为营。首先拿下第一问,确保不失分,然后分析第一问是否为第二、三问准备了思维基础和解题条件,力争第二问保全分,争取第三问能抢到分。 六、跳跃解答 就是指当不会解(或证)解答题中的前一问,而会解(或证)下一问时,可以直接利用前一问的结论去解决下一问。 七、退步分析 就是指当用直接法解答或证明某一问题遇到“卡子”时,可以采用分析法。格式如下:假设“卡子”成立,则···(推出已知的条件和结论),以上步步可逆,所以 “卡子”成立。 八、正难则反 就是指当用直接法解决某一问题感到很困难时,可以考虑反证法,找它的对立事件。 九、先改后划 当发现自己答错时,不要急于划掉重写。这是因为重新改正的答案可能和划掉的答题无多大区别。其次,看着空白的答案纸重新思考很费神。另外,划掉后解答不对会得不偿失。 十、联想猜押 首先,当遇到一时想不起的问题时,不要把注意力集中在一个目标,要换个角度思考,从与题目有关的知识开始类比联想。如“课本上怎么说的?”,“笔记本上怎么记的?”,“老师怎么讲的?”,“以前运用这些知识解决过什么问题?”,“是否能特殊化?”,“极限位置怎样?”等等 另外,考试时间快结束的时候,不要再尝试新的问题。如果选择题还有不确定的,可以在先淘汰部分选择支的情况下,根据四个选择支在整卷中出现的概率进行猜测。 十一、速书严查 卷面书写既要速度快,又要整洁、准确,这样既可以提高答题速度和质量,又可以给阅卷的老师以好印象;草稿纸书写要有规划,便于回头检查。检查要严格认真,要以怀疑的心态地查对每一道题的每一个步骤。 如“有没有看错了问题?”,“问题中的已知条件运用是否有误?”,“是否遗漏了什么?算错了什么?”等等。值得注意的是,对于检查时出现两种答案不确定的情况时,一般而言,“最先想起的才是正确答案”。 十二、调整心态 考前怯场或考试中某一环节暂时失利时,不要惊慌,不要灰心丧气,要沉着冷静,进行自我调节。一是自我暗示。如“自己难,别人也难”;“我不会做,别人也不一定会做”;“我要冷静,要放松”等。 二是尝试调试。如:做深呼吸3-4次;全身高度缩紧10秒钟,然后突然放松;双手举至面部且自上而下干洗脸5-6次或伸展四肢和腰背,活动手腕和头颈。

⑽ 怎样提高做数学题的速度

这是我几年来学数学的经验喔,就是靠它来保持好成绩的!
1:准备5个本子,一个练习本,一个笔记本,一个草稿本、一个画图和一个错题本。练习本主要是记课堂上老师讲的易错的、经典的、经常会考到题.笔记本是记老师说的重要的话,公式。草稿本就不用说了吧。画图本(非常值得一提)有些列方程,求数量关系,几何的题一时半会儿找不到头绪,就可以在本子上话画楚数量关系,线段图,放射图都可以,只要你自己看得懂就可以。一遍读不懂题就多读几遍,慢慢找寻思路,一步一步来,写出已知和未知的条件在画图。错题本(从小学开始就很受用的)考试易错的题可以记录、不会的题可以记录(找老师解决)、经常错讲了但忘记怎么做的题可以记录,但是很重要的一点,有些你自己知道是粗心做错的题就不要记了,包括一些计算的,只要掌握方法就可以了。以免耽误你复习的时间。复习时就可以拿出来看,隔一段时间就拿出来翻翻,养成记错题的好习惯(这不是很难的),这样你就可以知道自己的弱点在哪裏,考试前就可以多多复习这方面了.
2:考试秘诀
考试时,不会做的题放在最后,实在不会了,就别做了,检查前面的题。
选择题实在找不出正确答案也别乱选,通常有4个选项,如果你乱选的话,正确几率只有25%(通常都不会蒙对),所以,先按照自己的思路去想想看,算一算,看有没有一样的。实在不行,就把最不可能的答案划去(至少会有一个的吧?)这样,正确几率就大大提升了。
应用题尤为重要,A卷的通常很简单但计算如果出问题就会丢大分了,所以要多多检查才好。不会做的应用题,拿铅笔将条件标出来,理清思路,想想做过的有关题型,找到条件,找到问题,用给出的数字条件进行联想,套用公式?逆用公式?数学题就是从公式上慢慢编出来的.

最后想提醒你,平时多动动脑筋,在商场裏算算价钱与重量之间的关系,多做做数学题,总而言之脑筋越用越灵活的,所以别嫌辛苦,大家都一样,多从基础做起实在不行,花一个假期从头来过,总之成功都是汗水换来的。不会就找老师,有什么关系,大家都交了钱不问白不问,嘿嘿~~加油喔~~

阅读全文

与如何快速做数学填字题相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1301
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1026
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:979
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1060