Ⅰ 数学有哪些特点
提问者你好。
数学的抽象,在对象上、程度上都不同于其他学科的抽象,数学是借助于抽象建立并发展起来的.数学的抽象撇开了对象的具体内容,而仅仅保留数量关系和空间形式.在数学家看来,五个石头、五座大山、五朵金花与五条毒蛇之间,并没有什么区别.数学家关心的只是“五”.又如几何中的“点”、“线”、“面”的概念,代数中的“集合”、“方程”、“函数”等概念都是抽象思维的产物.“点”被看作没有大小的东西,无长无宽无高;“线”被看作无限延长而无宽无高,“面”则被认为是可无限伸展的无高地面.实际上,理论上的“点”、“线”、“面”在现实中是不存在的,只有充分发挥自己的空间想象力才能真正理解。
有的同学因数学的抽象而感觉数学枯燥、难学,其实“抽象”是数学的武器,是数学的优势.我们应该喜爱“抽象”,在数学的抽象过程中保留量的关系和空间形式,而舍弃其他一切,学会运用“抽象”的手段来解决问题。
Ⅱ 初一数学知识点有哪些
初一数学知识点有:
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
2相反数知识点
(1)相反数的概念:只有符号不同的两个数叫做互为相反数。
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
注意:重要辅助线:⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线。
等腰三角形的性质:
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于45°。
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则<a。
④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°-2∠B,∠B=∠C。
Ⅲ 小学数学知识点有哪些
小学数学知识点:
1、算式:加,减,乘,除。
2、对三角形的认识、三角形的面积计算公式、三角形的周长计算公式。
3、长方形的周长计算公式、长方形的面积计算公式。
4、对圆的认识、圆的面积计算公式、圆的周长计算公式、圆柱的表面积计算公式。
5、小数、分数,分数又包括带分数、假分数、真分数。
6、对百分数的认识、百分数的运用。
7、比的认识、化简比、求比值。
8、正方形的面积计算公式、正方形的周长计算公式。
9, 什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15,分数除以整数(0除外),等于分数乘以这个整数的倒数。
Ⅳ 初一数学全部知识点有哪些
一、正负数
1、正数:大于0的数。
2、负数:小于0的数。
3、正数大于0,负数小于0,正数大于负数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
二、有理数
1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
三、数轴
1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2、数轴的三要素:原点、正方向、单位长度。
3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
相反数的和为0 a+b=0 a、b互为相反数。
四、有理数的加减法
1、先定符号,再算绝对值。
2、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
五、有理数乘法(先定积的符号,再定积的大小)
1、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2、乘积是1的两个数互为倒数。
Ⅳ 数学上的点是什么点的定义是什么
在几何学上点是没有大小而只有位置,不可分割的图形。
Ⅵ 数学薄弱点有哪些
(1) 凑十法计算。
凑十法加减法都可以使用。 如“n-9”就可以计算为“n-10+1”;“9+n”可以计算为“10+n-1”。
(2)食物算术法。
根据孩子的特点,孩子对自己喜欢的食物是非常敏感的,根据这一点,在和孩子的生活中,家长可以根据食物对孩子进行简单的加减法教育。
(3)给孩子讲解人民币上的图。
Ⅶ 数学知识点有哪些
数学知识点:
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a。
3、乘法交换律:a × b = b × a。
4、乘法结合律:a × b × c = a ×(b × c)。
5、乘法分配律:a × b + a × c = a × b + c。
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)。
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法:被除数=商×除数+余数。
Ⅷ 小学数学知识点有哪些
小学数学知识点归纳:数学概念。
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5。
简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。