A. 数学建模 线性规划
设甲乙丙分别带x,y,z件。
x+y+z=10
①
x+2y+3z≤18
②
2x+y+3z≤100
③
则总价值W=3x+5y+7z
解答过程:利用①把z用x和y表示出来带进②③中,就变成了线性规划的问题。
即可行域为2x+y≥12和x+2y≥-70
解得W最大为46
B. 数学建模方法和步骤
数学建模的主要步骤:
第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建
模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以
高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应
尽量使问题线性化、均匀化。
第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间
的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老
人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱
大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工
具愈简单愈有价值。
第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,
特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计
算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作
出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差
分析,数据稳定性分析。
数学建模采用的主要方法有:
(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模
型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策
等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。
(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型
1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状
态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构
。
3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的
可能变化,人为地组成一个系统。
C. 请高手解决数学建模线性规划问题 用MATLAB编写代码!!!
clc; clear all;
net_fun = inline('300*x(1)+160*(2)+270*x(3)+140*x(4)');
A = [0 0 3 2;0 0 -3 -2;1 0 1 0;-1 0 -1 0;0 1 0 1;-1 0 -1 0];
b = [48 0 36 -30 39 -30];
Aeq = [3 2 0 0]; beq = 120;
lb = [0 0 0 0]; ub = [];
x0 = [0 0 0 0];
options = optimset('Algorithm', 'active-set', 'TolFun', eps, 'TolX', eps);
[x,fval,exitflag] = fmincon(net_fun,x0,A,b,Aeq,beq,lb,ub,[],options)
D. 这道数学建模怎么做他们说用线性规划,用线性规划怎么写,求解
生产产品1需要A2单位,B7单位,C5单位,而,每天提供原材料A10单位,这题应该是让你做一个最优化问题,可能是利润最大化,可能是生产时间最短,利用QSB做这类线性规划最简单了,也可以用matlab、lingo等
E. 怎么用excel做线性规划的模型
在Excel中加载规划求解模块。Excel2010的步骤是:文件->选项->加载项->转到->勾选上“规划求解加载项”。
F. 数学建模,线性规划标准型
化为大于。既然是建模,那当然要根据实际意义来限定条件啦。
一般情况下,线性规划中,以目标函数max,约束条件为<,自变量x>0为标准型。这是大多数的习惯。单纯性法也一般按照标准型来解答的。
G. 数学建模怎么建立模型
1、模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2、模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3、模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
4、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
5、模型分析
对模型解答进行数学上的分析。能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论哪种情况都需进行误差分析,数据稳定性分析。
6、模型检验
把数学上分析的结果翻译回到现实问题,并用实际的现象、数据与之比较,检验模型的合理性和适用性。
7、模型应用
取决于问题的性质和建模的目的。
H. 常见30种数学建模模型是什么
1、蒙特卡罗算法。
2、数据拟合、参数估计、插值等数据处理算法。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
4、图论算法。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
6、最优化理论的三大非经典算法。
7、网格算法和穷举法。
8、一些连续离散化方法。
9、数值分析算法。
10、图象处理算法。
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。
要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。
(8)数学建模线性规划模型怎么写扩展阅读:
数学建模是一个让纯粹数学家(指只研究数学,而不关心数学在实际中的应用的数学家)变成物理学家、生物学家、经济学家甚至心理学家等等的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。
I. 数学建模 线性规划
设甲乙丙三种物品分别带x,y,z种
目标是
max 3x + 5y +7z
需要满足的约束条件是
x + 2y + 3z <= 18
2x + y + 3z <= 100
x + y + z = 10
x >= 0
y >= 0
z >= 0
用单纯型法解上面的问题可以得到一个最优解
x = 2
y = 8
z = 0
总价值最大为46
倘若不用单纯型法,这个问题也可以画图解决:
把z = 10 - x - y代入上面的问题可以得到
max 70 - 4x - 2y
需要满足的约束条件是
2x + y >= 12
x + 2y >= -70(该条件多余,可以去掉)
x + y <= 10
x >= 0
y >= 0
在2维平面上画出图像可以看出
满足条件的最优解都在线段2x+y = 12(2<=x<=6)上面
再结合x,y,z必须为整数
最后可得最优解
x=2,y=8,z=0
或
x=3,y=6,z=1
或
x=4,y=4,z=2
或
x=5,y=2,z=3
或
x=6,y=0,z=4
最大总价值都是46