导航:首页 > 数字科学 > 数学有趣的现象有哪些

数学有趣的现象有哪些

发布时间:2022-09-27 13:34:48

A. 你知道什么数学中有趣的现象

6的立方根能被尺规作出吗?

B. 生活中的趣味数学例子有哪些

生活中的趣味数学例子有如下:

1、桌子问题:一张方桌,砍掉一个角还剩下几个角。

2、切豆腐问题: 一块豆腐切三刀,最多能切成几块。

3、切西瓜问题:一个西瓜用三刀切七份,吃完剩下八块皮,如何做到。

4、竹竿问题:5米长的竹竿能不能通过一米高的门。

5、纸盒问题:边长一米的方盒子能不能容下一米五的木棍。

6、时钟问题:经过12小时,时钟和分针重复多少次。

7、折纸问题:一张1毫米厚的纸,对折1000次,厚度有多高。

8、烙饼问题:烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最少用几分钟。

9、学校操场大约的面积,一件物体(一袋盐、几个苹果、一瓶墨水等)大概的重量,估计人或物的高度等。

10、为室内装修户测量并计算铺地面用多少地板砖,粉刷四壁和屋顶要购买多少涂料,需多少材料费。

C. 生活中有什么有趣的数学现象

蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成.组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料.蜂房的巢壁厚0.073毫米,误差极小.
丹顶鹤总是成群结队迁飞,而且排成“人”字形.“人”字形的角度是110度.更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少.

D. 生活中有趣的数学现象

写作思路及要点:以生活中有趣的数学现象为题,围绕其展开描写,接着表达自己的想法以及观点。

正文:

今天爸爸带回了一瓶红酒,透过酒瓶,能清晰地看见酒瓶内的红酒色泽红润,光鲜亮丽,十分诱人。我看着它那光滑的的酒瓶,心想:不知道这个酒瓶有多大呢?要不是它不是规则的图形,我早就算出来了。

我仔细的观察着酒瓶,突然发现它的下半部分是圆柱形的,我欣喜若狂,这圆柱的体积可学过,这样,酒瓶体积就好算了。我从柜子里找出了一把30厘米的直尺,把尺子放在酒瓶的边上,可是,一把尺子放上去,我就发现了问题。

这酒瓶的形状不规则,但我也顾不了这么多了,量出了酒瓶下半部分圆柱形的高是25厘米,直径是6厘米。紧接着,我又找来了纸和笔,拿起笔就在纸上演算起来,没一会儿,我就把酒瓶下半部分的体积算了出来。

我看着酒瓶中的红酒,把它倒来倒去,哎,就是这么一倒,酒瓶中的空气从瓶颈处移到了瓶底,我看着它,猛然醒悟,原来把酒瓶倒过来,瓶颈处的空气就会移到瓶底,形成一个规则的圆柱。

我又翻箱倒柜找出了一个以前喝完红酒的酒瓶,拿直尺一量,和爸爸带回来的一瓶红酒高和直径一样,我就拿来一支红色蜡笔,用尺子在酒瓶瓶身和瓶颈处画了一条线。

我又把画了线的酒瓶拿进厨房灌了刚好到红线的水,又用木塞子把瓶口塞住,把酒瓶倒了过来,果不其然,空余部分到了瓶底,我用直尺量出了空余部分的高是6厘米,又奋笔疾书,算出来了空余部分的体积。再把水的体积和空余部分的体积相加,就算出了酒瓶的体积。

生活中,处处留心皆学问,小小的一个红酒瓶也有大大的学问,只要我们有一颗善于思考,乐于探究的心,生活中的数学世界就任你探求!

E. 生活中有趣的数学知识有哪些

生活中有趣的数学知识有如下:

1、骑自行车的时候用脚蹬一圈脚踏板自行车行走的米数。我们可以去测量车轮的半径,再用圆的周长公式求出来。

2、原始社会,人类智力低下,当时把石块放进皮袋,或用贝壳串成珠子,用“一一对应”的方法,计算需要计数的物品。

3、面积的计算。自家的住房面积,公园的占地面积,操场的活动面积等等。

4、统计学的计算。迟到的时候需要在执勤人员那里登记,要求写下年级班级姓名。这样学校就会知道这个星期哪个班的迟到人数最多,哪个班迟到人数最少。

5、工资的计算。财务收入与支出,日常的消费管理等等。

6、计算机相关工作者,数学是工作中必不可少的。C语言写程序,就需要运用排序算法(如快速排序,插入排序,堆排序,归并排序,基数排序,希尔排序,桶排序,锦标赛排序等等)如果掌握《数据结构》的相关知识,就会变得非常容易。

F. 求有关于“数学黑洞”之类的数学有趣现象

一个任意四位数,把四个数字分别组成一个最大的数和一个最小的数,作差,得新的四位数,重复此过程,7次内必得6174. 数学被誉为“科学之母”,在现代科技的发展中起着定海神针般的作用,而现代的战争更是被认为将是一场“数学家和信息学家的战争”。在信息战中,要运用数学作大量的模拟运算,运用数学在空间作精确的定位,运用数学对导弹作精密制导,运用数学来研究保密通信的算法,运用数学作为网络攻击利器。 在天文学上有着着名的“黑洞”现象,无独有偶,在数学中也有这种神密的黑洞现象,对于数学黑洞,无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,就像宇宙中的黑洞可以将任何物质(包括运行速度最快的光)牢牢吸住,不使它们逃脱一样
【一】123黑洞 数学中的123就跟英语中的ABC一样平凡和简单。然而,按以下运算顺序,就可以观察到这个最简单的 黑洞值:①数:设定一个任意的数,例如:1234567890, ②偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个。 ③奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个。 ④总:数出该数数字的总个数,本例中为 10 个。 ⑤新数:将答案按 “偶-奇-总” 的位序,排出得到新数为:5510。 ⑥重复:将新数5510按②、③、④的算法重复运算,可得到新数:134。 ⑦重复:将新数134按②、③、④的算法重复运算,可得到新数:123。 结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。换言之,任何数的最终结果都无法逃逸123黑洞。 【二】6174黑洞 比123黑洞更为引人关注的是6174黑洞值,它的算法如下: ①数:设定一个4位数字不全相同的4位数,例如1234(也可取重复数字,如2244等,只要4个数字不全相同就行); ②大数:取这4个数字能构成的最大数,本例为:4321; ③小数:取这4个数字能构成的最小数,本例为:1234; ④差:求出大数与小数之差,本例为:4321-1234=3087; ⑤重复:对新数3087按②、③、④的算法求得新数为:8730-0378=8352; ⑥重复:对新数8352按②、③、④的算法求得新数为:8532-2358=6174; ⑦结论:对任何只要不是4位数字全相同的4位数,按上述算法,不超过7次计算,最终结果都无法逃出6174黑洞;

G. 写10个生活中的数学现象(说明用到数学知识或原理)

1、抽屉原理

“任意367个人中,必有生日相同的人。”

“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”

“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”

这里用到的是抽屉原理,抽屉原理的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。

利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

2、涨跌停现象

假设你有10万元:

第一种情况:第一天涨停后是11万元,第二天跌停后剩下9.9万元。

第二种情况:第一天跌停后是9万元,第二天涨停后还是9.9万元。

3、补仓或定投现象

假设一个基金净值10元的时候,你买入了1万元。第二个月,基金净值跌到5元的时候,你又买了1万元。

请问:你的持仓成本是多少? A.7.5元 B.6.67元

正确答案:持仓成本是6.67元。

这就是基金定投的魅力,可以让你的持仓成本大幅降低。

4、蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。

5、丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!

6、冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

7、保本的资产组合

以下两种投资产品:

(7)数学有趣的现象有哪些扩展阅读:

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。

而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

H. 在数学方面,有哪些有趣的科学知识呢

两个迷惑了大部分人很久数学知识:

第一,硬币悖论。

这个问题会一度被广泛讨论的最大原因在于人为限制,为何这么说,先从问题本身分析。

三扇合着的门,其中有一扇门的背后有一只羊。现在打开其中一扇门,能看见羊的概率是1/3。如果有人先选择了一扇门,不管里面有没有山羊,这扇门暂时不开,而是打开另外两扇中的其中一扇没有羊的门。此时让一开始选门的人做出二次选择,继续打开这扇门或者打开另一扇未开的门。接下来出现了不知道是哪些人得出来的结论:“此时能看见羊的概率是2/3。”

这下确实把我愣住了,因为我怎么思考都感觉此时的概率是1/2,因为这种情况不就等于是排出了一扇门,在两扇门里作出选择吗,二选一究竟怎么得出个2/3来的?无苦苦挣扎,就是跳不出的死循环。

于是,无抱着谦虚的的心态,在网上寻求万能的网友来为我解决此题。

网友果然是万能,连解题方法都是五花八门,果然做数学题不能死脑筋呀,我还是太嫩了,得多学学。

很多解释我都看不懂,由于我知识水平有限,所以之后又找了一些文字接地气的网友来为我解答。在大家的合力帮助下,我终于理通了。一开始我只是以为自己太嫩了,理通的后我意识到,我根本就是孤陋寡闻,这种问题居然能一卡就卡了几个小时。我一直解不出2/3的原因,是问题的条件有漏了,漏了个啥?在二次选择的时候有两个选择,保留或更换,要想得出2/3的概率,就一定得有必定选择更换的条件,这样就变成了在3扇门里面选2扇门这种问题。

所以一开始的时候为什么没看见这个条件呢?因为一开始就有这条件的话,这“大难题”不就变成了小学生问题吗?原来如此,那解不出答案应该不是无的问题,而是条件的问题呀。不!这就是我的问题!这么长时间都找不到这缺失的条件,怎么可能不是我的问题!


I. 有趣的数学现象

只要你输入一三位数,要求个,十,百位数字不相同,如不允许输入111,222等。那么你把这三个数字按大小重新排列,得出最大数和最小数。再两者相减,得到一个新数,再重新排列,再相减,最后总会得到495这个数字,人称:数字黑洞。举例:输入352,排列得532和235,相减得297;再排列得972和279,相减得693;排列得963和369,相减得594;再排列得954和459,相减得495

任取一个数,相继依次写下它所含的偶数的个数,奇数的个数与这两个数字的和,将得到一个正整数。对这个新的数再把它的偶数个数和奇数个数与其和拼成另外一个正整数,如此进行,最后必然停留在数123。
例:所给数字 1479
有4个偶数4 4 0 2, 4个奇数1 7 1 9 , 4+4=8
第一次计算结果 448 3个偶数4 4 8 ,0个奇数 3+0=3
第二次计算结果 303
第三次计算结果 123
猜心术http://games.qq.com/images/mini/2005/03/20060314mind/20060314mind.htm
这个读心游戏的要求是
“吉普赛人祖传的神奇读心术.它能测算出你的内心感应”。
任意选择一个两位数(或者说,从10~99之间任意选择一个数),把这个数的十位与个位相加,再把任意选择的数减去这个和。
例如:你选的数是23,然后2+3=5,然后23-5=18。
在图表中找出与最后得出的数所相应的图形,并把这个图形牢记心中,然后点击水晶球。你会发现,水晶球所显示出来的图形就是你刚刚心里记下的那个图形 。
答:假设你选的数字是XY那么 最后得出的结果是 10*X + Y - (X+Y)= 9*X 也就是说不管你选择你,最后的结果一定是9的倍数,即9,18,27,36,45,54,63,72,81 之中的一个。你每点一次,每个数字所对应的图形都会变一次,这就给了你答案并不是确定的这样一个假象但数字所对应的图形无论怎么变,9,18,27,36,45,54,63,72,81所对应的图形都是相同的。所以显示的当然就是你心里所想的,因为不管你选的数XY是多少,都会是这个答案。

阅读全文

与数学有趣的现象有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:979
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1060