① 什么是数学文化
本系列博文试图从“普通人”(指那些不从事数学研究、数学教学等与数学直接相关行业的人们)的视角探讨数学文化。为了适合这些人的数学基础,力争
不以过高深的数学知识为载体
,希望具有初中知识就能读懂。
“数学文化”一词的出现不过20年左右,并且是逐渐进入普通人的视野的。我说的“普通人”是指那些不从事数学研究、数学教学等与数学直接相关行业的人们。越来越多的人开始关注“数学文化”一词,并试图了解它的准确含义,这说明它是有生命力的,也说明人们已经愿意从文化的角度关注数学,更愿意强调数学的文化价值。
数学本来就是与人们联系最紧密的一个知识领域,一个“学科”。它与“语文”一样,被认为是学习其它学科的基础和工具,也是人们生活的最基本的技能。有人甚至说,一个人如果“不识数”要比“不识字”还难以在社会上生活,可见数学基础知识的重要。
但是说到“数学文化”,大多数人还是很难对它有一个明晰的认识。数学文化当然不是指数学知识,不但不是指“识数”、“算术”这样最基础的数学知识,而且也不是指“几何”、“代数”、“微积分”以及更高深的数学知识。
一般认为,数学文化是指数学的思想、精神、方法、观点、语言以及它们的形成和发展。广义上还包括数学家、数学史、数学美、数学教育、数学发展中的人文成分,
还包括数学与社会的联系、数学与各种文化的关系,等等。
有一个比较直观的说法:当一个人学习了许多数学知识以后,如果把所有的数学知识都忘掉或都“抽出去”,剩下的就是数学文化。而这些数学文化在人的头脑中落户,则形成一个人的“数学素养”。
因此,学习数学知识的目的,并不全在于它的应用,因为事实上,的确是大多数人学了高等数学以后,一辈子都没有用到那些知识,那些概念、定理、公式几乎都忘了,甚至中学学到的数学知识也有很多没有用到过。但是他们在学习过程中所得到的训练,使其思维更具条理性、敏捷性、深刻性,他们会有更多的思考方式来解决问题,他们比没有学过这些数学知识的人要“聪明”许多,这就是数学文化在起作用。
数学文化已经引起教育界以及政府部门的高度重视,很多大学已经开设“数学文化”课程,《普通高中数学课程标准(实验)》(教育部2003年颁发)已经正式把数学文化做为新的重要的活动内容专门提出,义务教育阶段的数学课程也越来越重视数学文化的渗透。
说到这里我还想到,竟然有人提议高中文科学生可以不学数学,这显然不仅是荒谬的,而且是与素质教育思想背道而驰的,甚至是“反智主义”。
② 研究数学或者说学数学的意义是什么
我是学数学的,说说自己的看法。先说我对“数学学习”意义的理解:对大部分理工科同学而言,数学可能更多的是一种解决问题的工具。只有学好了数学,才可能利用它来解决现实中的问题。比如说:我们已经有流体力学方程了,也有了强有力的计算软件,所以很多人就认为我们可以清楚的计算各种流体了。但事实上完全不是这样,如果没有学习过相关的数学方面的知识与方法,得到的结果很可能是错误的,或者计算过程是(非必要地)耗时的。所以只有学习了数学中的相关知识,才能更好地利用数学,特别是用它来解决工作中的问题。而对大部分普通人而言,数学除了是日常生活中必不可少的基本技能(当然,只是基础数学);如果能够对统计学、数学模型理论有所了解的话,我认为这两者可以显着地改善你对现实世界的认识,至少不会被“45度水+55度水为什么不是100度的水”这样的简单问题迷惑,也更加容易识别各种骗局、虚假宣传等等。另外,逻辑学可能真的没有你想象的那么简单。再说说我对“数学研究”的体会:现在的数学受到了两个方向的驱动:应用的需求与自身的发展。还是以流体力学为例,湍流现象的数学表示是一个重要的数学问题,他既来源于实验科学与工程发展对湍流现象了解的需要,同时也是数学本身解决自身产生的新课题的需要。在某种意义下,数学可以被看做是单纯的形式逻辑,可以不与现实产生联系,所以作为逻辑的发展,怎样的背景下产生怎样的逻辑结果,这就是数学本身可以产生的新课题,例如哥德巴赫猜想,既然有素数的概念,就自然地会问这样的问题;另一方面,数学是其他科学的语言,其他的科学以数学作为描述的方法提出了一系列的模型(比如牛顿的经典力学模型),然后利用数学的形式逻辑,就可以由这个模型直接得到一系列的结果(比如较精确地计算行星的轨道),这其中就可能产生应用上对形式逻辑的需求,即提出的模型能不能得到这个结论,由此产生的问题比如“三体问题”往往就是跟多偏向现实需要(事实上还是与数学自身相混合)的问题。数学研究就是致力于解决这些问题,从而使得自身内容更丰富,而其他学科对他的应用更加顺利。就先简单的说这些吧。
③ 数学的重要性及深远意义
同学们好!今天的讲座,我代表高一数学备课组全体老师,和同学们交流、讨论高中数学的学习,希望对同学们今后的数学学习有所帮助。
我来讲座时,我的爱人告诉我:“要让学生学好数学,就应当使学生喜欢数学、欣赏数学、亲近数学,要让学生感到数学学习的快乐。”我希望今天的讲座能给同学们带来一点快乐。
一、什么是数学
1、伟大的革命导师恩格斯说:“数学是研究现实世界数量关系和空间形式的一门科学。”恩格斯是与马克思齐名的世界人民革命的导师,但数学为恩格斯的伟大增添了无限的光辉。
数学是什么?这是数学家仍不断思索的问题,数学家的语言是朴实的,听一听数学以外的声音吧:
音乐家说:“数学是世界上最和谐的音符。”
体育老师说:“数学是锻炼人的思维的体操。”
植物学家说:“世界上没有比数学更美的花朵。”
美学家说:“哪里有数学,哪里才有真正的美。”
诗人说:“离开了数学的思维,任何一首诗篇都是胡言。”
再听一听哲学家的心声吧:“或许你可以不相信上帝,但是你必需相信数学,世界什么都在变,唯有数学的理论是永恒的。”
2、世界各民族都有自己的语言,有些语言为多个民族所共用,在地球上,没有一种语言能统一地球,但是,数学语言已成为世界各民族的共用。
数学语言是一种科学的语言,她使人表达问题时条理清楚、准确、简洁、结构分明。
3、数学对现代社会产生了最深远的影响,人们可能会讲,计算机的发明才有划时代的意义,其实,同学们还不知道,计算机的发现者正是数学家冯·诺伊漫。
而计算机更高层次的运用还得靠数学,数学就是这样,朴素得从不张扬自己,默默为人类奉献着。
是金子总会发光,现代社会,人们普遍认识到数学是一种文化素养,没有现代数学就没有现代化,没有现代数学的文化是注定要衰落的。
八十年代,美国总统曾签署一道法令,号召“美国公民全民族提高数学素养。”引起世界的震惊。事情的起因是这样的,美国国家统计局调查发现,八十年代美国的国家科技发展缓慢,追根求源,在于对数学的重视不够。
前不久,美国总统奥巴马在国情咨文中又强调这一法令。
现在,全世界都有了这样的共识:“国家的富强在教育,教育的根本在科技,科学的根本是数学。”高科技本质上是数学技术。
4、数学成为自然科学的基础,这是物理学家、化学家、生物学家成功发后自内心的感受。马克思说:“一门科学只有成功的运用了数学,才能达到完善的地步。”
5、在社会经济领域,人们统计发现:在诺贝尔经济学奖的获奖者中,大部分是数学家,或者有研究数学的经历,为什么呢?是数学教会了人们如何思考,是数学教会了人们如何创新,这就是数学,一门改变和推动了世界的学科。
二、为什么学数学
1、数学是很有趣的,深入到数学的世界就是这样
(1)邻居家的两个小孩争大小:邻居家的两个小孩刚上小学,有一天,我问他们俩谁是老一,谁是老二,他们如实做了回答,我又问他们1和2谁大,他们也都答对了,当我再问他俩谁大时,他们俩争论起来“我是老一,我大。”“我是老二,二比一大,所以我大。”
争得不可开交,当我告诉他们学好数学就知道答案了,他们带着凝惑离开了。
(2)鬼巫人的故事:过去在农村,经常有人讲这样的经历:“在一个伸手不见五指的夜晚,某人从一个村庄到邻近的另一个村庄,走了一夜没有到达,天亮时发现自己在一块坟地里打转转了一夜。”这在农村被叫做鬼巫人,是很恐怖的事,但学习了圆的知识,你就很容易知道真正的答案。
2、数学是很有用的:一些家长告诉孩子,学不好数学上街会受骗,这是生活的基本要求。这个问题的另一个说法是:“学好了数学就不被人骗或去骗人。”
人们完全不用担心,数学学得好的人,完全进入了一个高层次的境界,摆脱了世俗的观念,更追求数学的高尚和完美。
前几年,中国的社会腐败成为严重的社会问题,国家虽然采取了一些措施,总不能彻底得以解决,有人就提出在党员干部中普及数学知识,提高干部的数学素养,这样可以有效防止腐败。
其实就是学数学的人,追求高尚和完美,同时通过数学算一算,腐败的代价是惨重的。
3、青年人都爱打扮自己,你知道怎样根据自己的身材和性格打扮自己吗?数学就可以告诉你。
身材细高像豆芽的,要把自己装扮得强壮些,就应穿横条的衣服。
身材胖一些的,要把自己装扮瘦高些,就应穿竖条状的衣服。
想表现青春活泼的,可以穿斜波纹的衣服,真的给人动感地带的感觉。
4、放眼世界来看,第一次世界大战是化学战,第二次世界大战是物理战,而现代战争则是数学战。
5、华罗庚说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁等,无处不有数学的重要贡献,甚至有些问题数学方法是唯一的出路。”
三、怎样学好高中数学
1、从初中到高中的变化
进入高中后,同学们的成绩会发生很大的变化,每一届学生都是这样,对此,我们学校领导非常重视,在同学军训期间进行了一次摸底考试,还没上高中课,结果与中考成绩就形成很大的反差,有前100名成绩的学生退到800名以外,也有1000名以外的学生进入了年级前100名。
学校在积极探索这种原因,一是同学经过紧张的中考,考取了理想的一中,有些同学产生了松口气的想法,对初中的知识不复习巩固,产生了遗忘;
二是中考的试卷是水平考试,分数不能完全代表智力水平,尤其是中考数学试卷,非常容易,中等生也有考满分的。
高一上了一段时间后,成绩的分化就突出出来,有一部分学生中考成绩优秀,成绩下降严重,甚至学生和家长产生这样的困惑:“在初中怎样的好,现在怎么了?”
这种现象不仅我们学校有,全国的中学,包括国家级重点中学都是普遍存在的。
究其根源是初中、高中的反差较大,下面我们做一个初中、高中的对比:
(1)知识的差异:
初中:内容少、浅、面窄,常量、题型少、简单,可反复磨炼,甚至死记硬背就可以考出高分。
高中:知识多、深、面宽;变量、题多,没有时间反复。
(2)教学方法差异:
初中:课堂容量小,讲速慢,例型少,反复,模仿。
高中:课堂容量大,知识复杂,速度快,题型多,很少反复。
(3)学法差异:
初中:自学能力差,讲授,被动学,反复练。
高中:自主探索,主动学习,获得知识的渠道宽。
2、高中数学学习的技术和方法
当前阶段,同学们要解决的是高中数学学习的技术和方法,以下是同学们值得重视的:
(1)从被动接受知识,转化为主动探索,积极适应高中数学老师的教学方法。有人说得好,当你不能改变环境时,就积极主动改变自己。
(2)从死记便背、模仿,转化为对概念、理论的深刻理解。
(3)从单纯做题,转移到归纳、提练数学思想、方法,举一反三。高中数学中含有丰富的数学思想和方法,是我们数学学习的指南。什么是思想,思想就是想,什么是方法,方法就是落实想的做法。比如一个人想过河,思想就是想过河,方法就是怎样过河……
(4)课前预习,记下不懂的问题,对记下的问题可研究、讨论,听课解决,带着问题听课,目的明确,增加注意力,提高听课的效果。
(5)做好数学笔记,记下课本上没有的,老师对概念更深刻的理解,和为高考而增加和深化的课外知识以及一些重要结论。
(6)多做数学,学好数学的有效途径就是“做数学”。
在比较初级的阶段,就是在理解数学基本内容的基础上多做习题(这是必要的),包括独立地做一些较难而有启发性的题目。
因为我们知道,习题只给了条件和结论,甚至只给了条件和问题,那么解决问题的过程实际就是一个再创造的过程,而较难的习题常要经过一段时间的反复思考,这种再创造过程自然可以培养创新能力,而一段时间的反复思考,则可以锻炼学生的坚持性,培养你们坚忍不拔,百折不挠的精神。
我国军事家、思想家叶剑英给学生写过一首诗:“攻城不怕坚,攻书莫畏难,科学有险阻,苦战能过关。”
但也要注意,问题应是“好”的问题,是对课程内容及思想方法的深入理解和掌握有帮助的问题,是学习中自然产生的基本题。问题应当有思考性,还可以有适当的开放性,而不是那种造作的偏、怪题。
现在的资料,多为经济利益作想,不考虑循序渐近,难、偏、怪很多,这主要迎合部分学生追求偏难的想法,对概念的深刻理解不利。
数学的学习,应当在掌握基础知识、基本技能的基础上体会数学的基本思想,而掌握了数学思想方法和精神实质,就可以由不多的几个公式、理论,演绎出千变万化的生动结论,显示出无穷无尽的威力,这正是数学中的以不变应万变。
3、打开解决问题的通道
我国数学家华罗庚说得好“问题是数学的心脏。”心脏不停,才有美丽的生命,解决问题就成了学好数学的根本,这也是同学们最关心的,有了问题怎样办,解决问题的途径有哪些(怎样让解决问题的渠道畅通)。
对数学学习中的问题,我们可以为问题建立一个纠错档案,这对每一位同学来说,都是你学数学最宝贵的东西,值得珍藏。
怎样记录呢?一是把错题或问题分章别类记下来;二是记下错误的过程;三是对错误的根源进行寻找分析;四是给出正确的答案。建立起来以后,可以常回家看看,要不怕麻烦,坚持下来就是胜利。
有的同学,解决问题的路径很单一,造成大量的问题积压,最后就形成了顽症,就难解决了。
解决问题,要打开多条道路,使得解决问题的路畅通无阻。有个药品广告说得好:“通则不痛,痛则不通。”
当前,我们有哪些解决问题的道路呢?
(1)自己独立钻研或查找资料,这样解决问题深刻,同时也培养锻炼了学数学的能力。
(2)请教老师,由于课间时间短,老师解答问题的时间有限,但是老师会通过几个同学提问,把共性的东西归纳出来讲解,这可能也有你的问题,要不耻下问(事例)。
为了便于同学提问,我现在设计有“学生数学问答纸”,同学们可以自由使用,这样解决问题的容量就大大增加了。
(3)同学之间相互协助,这是一条比较宽广的大道。同学们在一起的时间长,思维水平接近,易于沟通。要积极利用好这一渠道,就要建立良好的同学关系,互相协助。
(4)积极开辟解决问题的新途径,只有想不到,没有办不到。渠道通了,问题解决了,哪有不进步的道理呢?成绩只有属于你,胜利只有属于你。
人造就了数学,数学也必将造就一个新的你
马克思说:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”在前几次科技革命中,数学大都起到先导和支柱作用。
我们不能要求决策者本人一定要懂得很多数学,但至少要经常想想工作中有没有数学问题需要请数学家来咨询。
因为数学是科技创新的一种资源,是一种普遍适用的并赋予人以能力的技术。
一、世界强国与数学强国
数学实力往往影响着国家实力,世界强国必然是数学强国。数学对于一个国家的发展至关重要,发达国家常常把保持数学领先地位作为他们的战略需求。17-19世纪英国、法国,后来德国,都是欧洲大国,也是数学强国。17世纪英国牛顿发明了微积分,用微积分研究了许多力学、天体运动的问题,在数学上这是一场革命,由此英国曾在数学上引领了潮流。
法国本来就有良好的数学文化传统,一直保持数学强国的地位。19世纪德、法争雄,在数学上的竞争也非常激烈,到了20世纪初德国哥廷根成为世界数学的中心。
俄罗斯数学从19世纪开始崛起,到了20世纪前苏联时期成为世界数学强国之一。特别是苏联于1958年成功发射了第一颗人造地球卫星,震撼了全世界。当时美国总统约翰?肯尼迪决心要在空间技术上赶超苏联。他了解到:苏联成功发射卫星的原因之一,是苏联在与此相关的数学领域处于世界的领先地位。此外,苏联重视基础科学教育(包含数学教育)也是它在基础科学研究中具有雄厚实力的一个重要原因,于是下令大力发展数学。
第二次世界大战前美国只是一个新兴国家,在数学上还落后于欧洲,但是今天他已经成为唯一的数学超级大国。战前德国纳粹排犹,大批欧洲的犹太裔数学家被迫移居美国,大大增强了美国的数学实力,为美国打胜二战、提升战后的经济实力做出了巨大贡献。苏联发射第一颗人造地球卫星后,美国加强了对数学研究和数学教育的投入,使得本来在科技界、工商界、军事部门等方面就有良好应用数学基础的美国,迅速成为一个数学强国。苏联、东欧解体后,美国又吸纳了其中大批的优秀数学家。
二、数学及其基本特征
数学是一门“研究数量关系与空间形式”(即“数”与“形”)的学科。 一般地说,根据问题的来源把数学分为纯粹数学与应用数学。研究其自身提出的问题的(如哥德巴赫猜想等)是纯粹数学(又称基础数学);研究来自现实世界中的数学问题的是应用数学。利用建立数学“模型”,使得数学研究的对象在“数”与“形”的基础之上又有扩充。各种“关系”,如“语言” “程序” “DNA排序” “选举”、“动物行为” 等都能作为数学研究的对象。数学成为一门形式科学。
纯粹数学与应用数学的界限有时也并不那么明显。一方面由于纯粹数学中的许多对象,追根溯源是来自解决外部问题(如天文学、力学、物理学等)时提出来的;另一方面,为了要研究从外部世界提出的数学问题(如分子运动、网络、动力系统、信息传输等)有时需要从更抽象、更纯粹的角度来考察才有可能解决。
数学的基本特征是:
一是高度的抽象性和严密的逻辑性。
二是应用的广泛性与描述的精确性。
它是各门科学和技术的语言和工具,数学的概念、公式和理论都已渗透在其他学科的教科书和研究文献中;许许多多数学方法都已被写成软件,有的数学软件作为商品在出售,有的则被制成芯片装置在几亿台电脑以及各种先进设备之中,成为产品高科技含量的核心。
三是研究对象的多样性与内部的统一性。
④ 对数学文化的理解是什么
数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言、图表、符号表示,进行数学交流。通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美。
和所有文化现象一样,数学文化直接支配着人们的行动。孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成“怪人”。
学校里的数学,原本是青少年喜爱的学科,却成为过滤的“筛子”、打人的“棒子”。优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。
技巧
我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统。当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来。
总之,数学文化离不开数学史,但是不能仅限于数学史。当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。
⑤ 【知道日报】研究数学的意义是什么
研究数学的意义很多啊,看你个人从哪方面看。个人觉得,研究数学,有以下的意义:
1,总结,归纳,找出事物发展的规律,从而上升为真理。例如数学中的等比数列、等差数列的加法公式等。
2,就如下面的这位网友说的,开拓思维,锻炼我们的大脑,提升我们的大脑思维能力,有利于我们大脑的进一步开发。
3,数学存在我们生活的方方面面,它不仅可以教会我们生活中的一些简单加减乘除,而且它还对物理、经济、会计等有很大的影响,可以说,研究数学是关系社会发展的一个必不可少的工具。
⑥ 数学的意义与价值是什么
数学的意义:数学是研究数量、结构、变化、空间以及信息等,数学所描述的数量关系与空间形式,就自然成为物理学、力学、天文学、化学、生物学等自然科学的基础。数学的价值:数学为物理学、力学、天文学等科学提供了语言与工具。
在人类历史发展和社会生活中,数学也发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。数学的应用已深入到自然科学、技术科学和社会人文科学的各个领域,以及社会生活的各个方面。基础数学的知识与运用更是个人与团体生活中不可或缺的一部分。
数学不仅是自然科学的基础,而且也是一切重大技术革命的基础,20世纪最伟大的技术成就应当是电子计算机的发明与应用。它使人类进入了信息时代。然而,无论是计算机的发明,还是它的广泛使用,都是以数学为其基础的。
数学是研究数量、结构、变化以及空间模型等概念的一门古老而常新的学科,是由计数、计算、量度和对物体形状及运动的观察中产生的。数学的发生和发展经过了漫长的历史阶段,它具有精确性、抽象性、严格性、广泛性等特点,其中抽象是数学与生俱来的特征,导致了它的深邃和睿智。
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。
⑦ 为什么要学习数学文化
为什么要学习数学
大学数学(包括高等数学、线性代数、概率论与数理统计) 是高等院校理工类、经管类、农林类与医药类等各专业的公共基础课程. 如今, 即使以往一般不学数学的纯文科类专业也普遍开设了大学数学课程. 为什么现在对它的学习受到如此大的重视呢? 具体来说, 大致有以下两方面的原因:
首先是因为当代数学及其应用的发展. 进入20世纪以后, 数学向更加抽象的方向发展,各个学科更加系统化和结构化, 数学的各个分支学科之间交叉渗透, 彼此的界限已经逐渐模糊. 时至今日, 数学学科的所有分支都或多或少地联系在一起, 形成了一个复杂的、相互关联的网络. 纯粹数学和应用数学一度存在的分歧在更高的层面上趋于缓和, 并走向协调发展. 总而言之, 数学科学日益走向综合, 现在已经形成了一个包含上百个分支学科、各学科相互交融渗透的庞大的科学体系, 这充分显示了数学科学的统一性.
数学与其它学科之间的交叉、渗透与相互作用, 既使得数学领域在深度和广度上进一步扩大, 又促进众多新兴的交叉学科与边缘学科的蓬勃发展, 如金融数学、生物数学、控制数学、定量社会学、数理语言学、计量史学、军事运筹学,等等。这种交融大大促进了各相关学科的发展,使得数学的应用无处不在. 20世纪下半叶, 数学与计算机技术的结合产生了数学技术. 数学技术的迅速兴起, 使得数学对社会进步所起的作用从幕后走向台前. 计算机的迅速发展和普及, 仅为数学提供了强大的技术手段, 也极大地改变了数学的研究方法和思维模式. 所谓数学技术, 就是数学的思想方法与当代计算机技术相结合而成的一种高级的、可实现的技术. 数学的思想方法是数学技术的灵魂, 拿掉它数学技术就只剩下一个空壳. 数学技术对于人类社会的现代化起着极大的推动作用. 正是在这个意义上, 联合国教科文组织把21世纪的第一年定为“世界数学年”, 并指出“纯粹数学与应用数学是理解世界及其发展的一把主要钥匙”.
其次是因为数学能够很好地培养人的理性思维. 数学除了是科学的基础和工具外, 还是一种十分重要的思维方式与文化精神. 美国国家研究委员会在一份题为“人人关心数学教育的未来”的研究报告中指出: “除了定理和理论外, 数学提供了有特色的思考方式, 包括建立模型、抽象化、最优化、逻辑分析、由数据进行推断以及符号运算等. 它们是普遍适用的、强有力的思考方式. 应用这些数学思考方式经验构成了数学能力——在当今这个技术时代里日益重要的一种智力. 它使人们能批判地阅读, 能识别谬误, 能探索偏见, 能估计风险, 能提出变通办法. 数学能使我们更好地了解我们生活在其中的充满信息的世界.”数学在形成人类的理性思维方面起着核心的作用, 而我国的传统文化教育在这方面恰恰是不足的. 一位西方数学史家曾说过: “我们讲授数学不只是要教涉及量的推理, 不只是把它作为科学的语言来讲授——虽然这些都很重要——而且要让人们知道, 如果不从数学在西方思想史上所起的重要作用方面来了解它, 就不可能完全理解人文科学、自然科学、人的所有创造和人类世界.”
⑧ 数学文化是什么
数学文化:
狭义:数学的思想、精神、方法、观点、语言,以及它们的形成和发展。
广义:除上述内涵以外,还包含数学家,数学史,数学美,数学教育。数学发展中的人文成分、数学与社会的联系、数学与各种文化的关系,等等。
在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。
国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专着《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。
以上的着作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。
进入21世纪之后,数学文化的研究更加深入。一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动。
⑨ 数学文化对中小学生而言有什么意义
1、数学文化的培养,有助于学生更好地理解数学的本质。
数学是一种理性化的思维范式和认识模式,它不仅仅是一些运算的规则和变换的技巧,它的实质内容是能够让人们终身受益的思想方法。
因此,在教学实践中应该始终关注数学的这个本质特征,避免单纯追求数学学习的知识化倾向,注重能力、思维的培养。
在教学中通过对数学文化内涵的学习,数学文化的存在价值及数学文化的民族性和世界性的认识,学生能够全面感知数学既是一门知识、语言、自然与社会联系的工具,又是思想方法和具有审美特征的艺术的集合体。
通过对学生数学文化的培养,可以使学生建构出数学知识之间的联系,让学生深入地理解数学的本质,达到终身受益的目的。从而更好地将数学应用到社会中,为社会创造更多的财富。
2、数学文化的培养,有助于提高学生的数学素养。
在教学中要充分挖掘教材的文化价值。数学文化的内涵不仅表现在知识本身,还寓于它的历史中,数学是一种历史存在。
因此,在教学过程中,充分揭示数学知识产生、发展的全过程。数学既是创造出来的又是发明出来的,大到一门学科,小到一个符号,总是在一定的文化背景下出于某一种思考而产生的。我们的数学教育应当努力还原、再现这一发现或发明的过程,探寻数学知识的源泉。
重建被割裂的数学知识与现实背景的联系,让学生能够主动探寻并善于抓住数学问题的背景和本质。总之,无论是作为科学的数学,还是作为课程的数学,其实都展示了一种充满人类创造力和想象力的文化境界。
通过对数学文化的培养能够让学生主动思考,用自己的语言表达出自己的数学思想,从而合理地提出新思想、新概念、新方法。结合数学的文化背景,能够让学生全面地、多角度地去思考和解决问题,进而培养学生的科学态度和理性精神。
数学文化的对中学生的好处:
学习的目的在于“学以致用”,在应用的过程中熟能生巧才能有所创新。数学并不是枯燥乏味的而是充满生机和活力的,它有着它的神秘美。数学中还存在一些猜想,如黎曼猜想、哥德巴赫猜想、四色猜想的书面证明问题等都未得到彻底解决。
在有效地引导学生试图解决这些猜想的过程中,适当引入其在数学的历史长河中的发展过程,通过对数学文化的传播及对学生数学文化的培养。
让学生漫步在变化发展着的数学文化形态之中,在潜移默化中激发学生求知欲和创新意识,拓展学生的思维。“学源于思,思源于疑”,“尽信书不如无书”,使学生在质疑中勇于探索。
⑩ 研究数学的意义是什么你都知道吗
学习数学是一回事,研究数学又是另一回事。不懂加法的人,你要让他去用计算器,他知道自己在干什么吗?不懂积分矩阵的人,你给他一道题去用matlab算,就算他能算出来,他能自己从运用中转化出题目来算吗?如果不学就能用计算器算,那就不需要人了。你的理解是你学数学是在学计算技巧,这对你来说也许是真的,事实上很多工科的人动手算积分的能力比数学专业的人要强得多,而数学专业多数时候并不重视数值计算能力,这是工科数学教学和数学专业教学的区别。至于研究,研究工作往往是出现疑问/问题,然后试图解开疑问,而不是通过先确立方向来找问题。如果你未来做研究工作的话,就知道问“有什么方向”是一个无法简单回答的问题,一个学科里面的学问有多少分类,就有多少方向,这还只是粗略分类。