1. 生活中的趣味数学例子有哪些
生活中的趣味数学例子有如下:
1、桌子问题:一张方桌,砍掉一个角还剩下几个角。
2、切豆腐问题: 一块豆腐切三刀,最多能切成几块。
3、切西瓜问题:一个西瓜用三刀切七份,吃完剩下八块皮,如何做到。
4、竹竿问题:5米长的竹竿能不能通过一米高的门。
5、纸盒问题:边长一米的方盒子能不能容下一米五的木棍。
6、时钟问题:经过12小时,时钟和分针重复多少次。
7、折纸问题:一张1毫米厚的纸,对折1000次,厚度有多高。
8、烙饼问题:烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最少用几分钟。
9、学校操场大约的面积,一件物体(一袋盐、几个苹果、一瓶墨水等)大概的重量,估计人或物的高度等。
10、为室内装修户测量并计算铺地面用多少地板砖,粉刷四壁和屋顶要购买多少涂料,需多少材料费。
2. 给我10个适合初中生玩的数学游戏
如下:
1、碰球——交代游戏要求,如两数合起来是8。师:“我的一球碰几球”,幼:“你的1球碰7球”(拍手7下)。游戏速度逐渐加快。
2、两牌凑点——先抽上书一数字的纸一张,一幼儿显出一张小组此数字的牌,另一幼儿必须出能凑成此数的牌,否则xx。
3、猜纽扣(可用其他东西替代)——教师告诉幼儿纽扣总数后分别把纽扣放在两只手上,先看一只手中的纽扣数量,然后请幼儿猜一猜另一只手里有几粒纽扣。
4、凑数游戏——教师任意发出一种声音(或出示手指或跺脚等),如动物的叫声,幼儿随即附和,要求两人发出的声音次数(或手指数、跺脚数等)合起来是某一总数。该游戏也可让幼儿两两一对合作玩。
数学游戏相关:数学绘本
市面上有很多数学绘本,对孩子的数学思维、建立数感,都有非常大的帮助,数萌在线的数学思维课上,也有自己设计的数学绘本,主要是因为数学绘本上的图画属于半抽象思维,能帮助孩子过渡到抽象思维,而且绘本中可爱的形象,也更容易激发孩子的好奇心和探索欲。
唯一遗憾的是,在市场上购买的数学绘本,并没有很系统的和课程大纲结合在一起。
3. 有哪些初中数学课活跃气氛的游戏
1、明7暗7游戏
班内同学报数,当遇到7、17、27等有明显“7”的,要说“过”;当遇到7的倍数时,14、21、28等要说这个数的下一个数,当你轮到14时,你要说“15”。这个最容易出错的为27的下一位同学,因为27的说完“过”,说“28”的要说29。
2、24点
任意抽取4张牌(称为牌组),用加、减、乘、除(可加括号,高级玩家也可用乘方开方与阶乘运算)把牌面上的数算成24。每张牌必须用且只能用一次。
以自己独具的数学魅力和丰富的内涵正逐渐被越来越多的人们所接受。这种游戏方式简单易学,能健脑益智,是一项极为有益的活动。
3、“找零钱” 游戏
男生代表1元钱,女生代表5毛钱。由老师说出具体价格数目,由男女生自由组合,最快组合完毕的即为获胜者,落单或者组合错误的则视为失败。 游戏意义:让大家都了解每个人都有其存在的价值,要懂得互相尊重和珍惜。
4、“海内存知己,天涯若比邻” 游戏
7或8个人一组(通过分发扑克牌随机组合),以小组为单位,自行选出自己的组长,然后顺时针依次介绍自己(包括姓名、家乡、性格、爱好),最后由组长来总结发言并介绍自己小组所有成员的基本情况。
5、搭火柴棒
它主要是考查同学们的动手操作能力,观察分析能力,联想归纳能力和积极探索能力。用火柴棒搭成由6个等边三角形组成。请你移置其中的4根火柴棒,使之成为3个等边三角形。
参考资料来源:网络——24点
4. 初中数学趣味故事
数学趣味小故事 1、蝴蝶效应气象学家Lorenz提出一篇论文,名叫“一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?”论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做“蝴蝶效应”。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。参考资料:阿草的葫芦(下册)——远哲科学教育基金会 2、动物中的数学“天才”蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报) 3、麦比乌斯带每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。 4、数学家的遗嘱阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二的遗产,我的女儿将得三分之一。”。而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢? 5、火柴游戏一个最普通的火柴游戏就是两人一起玩,先置若干支火柴于桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?例如:桌面上有n=15根火柴,甲﹑乙两人轮流取,甲先取,则甲应如何取才能致胜?为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1﹑3﹑7,则又该如何玩法?分析:1﹑3﹑7均为奇数,由于目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1﹑3﹑7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对于火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。 6、韩信点兵韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。中国有一本数学古书“孙子算经”也有类似的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三”术曰:“三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。”孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。生活中的数学http://www.pep.com.cn/gzsx/jszx/kwyd/shzdsx/
5. 初中数学兴趣活动有哪些
初中数学兴越活动有:数学竞赛、制作数学模型,阅读数学历,有奖数学答题,速算比赛等。
6. 初中数学有趣的数学公式
能把圆周率和e联系起来的初等公式在数学界是少之又少,是数学王国中的国宝级公式。除了大名鼎鼎的欧拉公式,恐怕就是这个式子比较出名了。这个公式的形式异常的漂亮,只可惜它只是个近似公式。所以排名第九。虽然是个近似公式,但是近似程度相当的高,有七位有效数字是相同的,也就是说二者的差别在千万分之一以内。您不妨用电脑上的计算器一试。
7. 身边有趣的数学现象有哪些
身边有趣的数学现象有如下:
1、抽屉原理:
如果我们去参加一场婚礼,人数超过367人,那么其中必然有生日相同的人(并非同年)。
这就是抽屉原理。
把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。
由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。
运用到了数学的抽屉原理。
2、猫的面积:
冬天,猫睡觉时总是把身体抱成一个球形,是因为这样身体散发的热量最少。
在数学中,体积一定,表面积最小的物体是球体。
猫缩成一个球体,可以减小和外界接触的面积,降低热交换的速度,减少热量损失的速度,节省能量,保持体温。
运用到了数学的面积学。
3、四叶草叫“幸运草 ”:
三叶草,学名苜蓿草,是多年生草本植物,一般只有三片小叶子,叶形呈心形状,叶心较深色的部分亦是心形。
四叶草是由三叶草基因突变而产生的,它只占其中的十万分之一。也就说在十万株苜蓿草中,你可能只会发现一株是‘四叶草’,因为机率太小。因此“四叶草”是国际公认为幸运的象征。
运用到了数学的概率学。
4、车轮都是圆的而不是其他形状:
圆的中心叫圆心,圆上任何一点到圆心的距离都是相等的。把车轮做成圆形,车轴在圆心上,当车轮在地面滚动时,车轴离地面的距离,总是等于车轮半径。
因此,车里坐的人,就能平稳地被车子拉着走。假如车轮变了形,不成圆形了,轮上高一块低一块,到轴的距离不相等了,车就不会再平稳。
运用到了数学的圆心知识。
5、风扇的叶片都是奇数:
这是因为奇数的叶片组合能比偶数的叶片组合带来更多的性能优势。
如果一旦叶片数量为偶数片设计,并形成对称的排列方式的话,那么不但使得风扇自身的平衡性难以调整,而且容易使风扇在高速转时产生更多的共振,从而导致叶片无法长时间承受共振产生的疲劳,最终出现叶片断裂等情况。
因此,轴流风扇的设计多为不对称的奇数片叶片设计。
同样的设计理念在日常使用的电风扇或螺旋桨直升飞机的设计中都有体现。如果风扇是三叶结构,叶片制作较宽且叶片根部较强,各个部位的密度的等需均匀;如果为五叶结构,叶片较窄一些,厚度、强度也相对较低。
运用到了数学的奇偶数概念。
8. 在数学方面,有哪些有趣的科学知识呢
两个迷惑了大部分人很久数学知识:
第一,硬币悖论。
这个问题会一度被广泛讨论的最大原因在于人为限制,为何这么说,先从问题本身分析。
三扇合着的门,其中有一扇门的背后有一只羊。现在打开其中一扇门,能看见羊的概率是1/3。如果有人先选择了一扇门,不管里面有没有山羊,这扇门暂时不开,而是打开另外两扇中的其中一扇没有羊的门。此时让一开始选门的人做出二次选择,继续打开这扇门或者打开另一扇未开的门。接下来出现了不知道是哪些人得出来的结论:“此时能看见羊的概率是2/3。”
这下确实把我愣住了,因为我怎么思考都感觉此时的概率是1/2,因为这种情况不就等于是排出了一扇门,在两扇门里作出选择吗,二选一究竟怎么得出个2/3来的?无苦苦挣扎,就是跳不出的死循环。
于是,无抱着谦虚的的心态,在网上寻求万能的网友来为我解决此题。
网友果然是万能,连解题方法都是五花八门,果然做数学题不能死脑筋呀,我还是太嫩了,得多学学。
很多解释我都看不懂,由于我知识水平有限,所以之后又找了一些文字接地气的网友来为我解答。在大家的合力帮助下,我终于理通了。一开始我只是以为自己太嫩了,理通的后我意识到,我根本就是孤陋寡闻,这种问题居然能一卡就卡了几个小时。我一直解不出2/3的原因,是问题的条件有漏了,漏了个啥?在二次选择的时候有两个选择,保留或更换,要想得出2/3的概率,就一定得有必定选择更换的条件,这样就变成了在3扇门里面选2扇门这种问题。
所以一开始的时候为什么没看见这个条件呢?因为一开始就有这条件的话,这“大难题”不就变成了小学生问题吗?原来如此,那解不出答案应该不是无的问题,而是条件的问题呀。不!这就是我的问题!这么长时间都找不到这缺失的条件,怎么可能不是我的问题!
9. 有趣的数学知识有哪些
有趣的数学知识有如下:
1、假如“一拃”的长度为8厘米,量一下课桌的长为7拃,则可知课桌长为56厘米。如果每步长65厘米,上学时,数一数走了多少步,就能算出从家到学校有多远。
2、身高也是一把尺子。如果身高是150厘米,那么抱住一棵大树,两手正好合拢,这棵树的一周的长度大约是150厘米。因为每个人两臂平伸,两手指尖之间的长度和身高大约是一样的。
3、要是想量树的高,影子也可以帮助。只要量一量树的影子和自己的影子长度就可以了。因为树的高度=树影长×身高÷人影长。
4、若去游玩,要想知道前面的山距你有多远,可以请声音帮量一量。声音每秒能走331米,那么对着山喊一声,再看几秒可听到回声,用331乘听到回声的时间,再除以2就能算出来了。
5、“天象记录员”珊瑚虫科学家们发现,珊瑚虫会在自己身上记录时间:它们在体壁上每天“刻画”一条环纹,一年“刻画”365条,既不多也不少。
因此想知道它们的年龄,只要数数它们体壁上的环纹即知。科学家们还发现,3.5亿年前的珊瑚虫,每年“刻画”在身上的环纹不是365条,而是400条。原因是,那时地球自转一天仅为21.9小时,一年不是365天,而是400天。