导航:首页 > 数字科学 > 数学一级数定理有哪些

数学一级数定理有哪些

发布时间:2022-10-01 10:59:51

❶ 求世界数学着名定理

托勒密定理:四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。

蝴蝶定理:P是圆O的弦AB的中点,过P点引圆O的两弦CD、EF,连结DE交AB于M,连结CF交AB于N,则有MP=NP。

帕普斯定理:设六边形ABCDEF的顶点交替分布在两条直线a和b上,那么它的三双对边所在直线的交点X、Y、Z在一直线上。

高斯线定理:四边形ABCD中,直线AB与直线CD交于E,直线BC与直线AD交于F,M、N、Q分别为AC、BD、EF的中点,则有M、N、O共线。

莫勒定理:三角形三个角的三等分线共有6条,每相邻的(不在同一个角的)两条三等分线的交点,是一个等边三角形的顶点。

拿破仑定理:以三角形各边为边分别向外侧作等边三角形则他们的中心构成一个等边三角形。

帕斯卡定理:若一个六边形内接于一条圆锥曲线,则这个六边形的三双对边的交点在一条直线上。

布利安双定理:设一六角形外切于一条圆锥曲线,那么它的三双对顶点的连线共点。

梅尼劳斯定理:如果一直线与三角形ABC的边BC、CA、AB分别交于L、M、N,则有:(AN/NB)*(BL/LC)*(CM/MA)=1 (考虑线段方向,则等式右边为-1)。

它的逆定理:若有三点L、M、N分别在三角形ABC的边BC、CA、AB或其延长线上(至少有一点在延长线上),且满足(AN/NB)*(BL/LC)*(CM/MA)=1,则L、M、N三点共线。

塞瓦定理:设O是三角形ABC内任意一点, AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1。

它的逆定理:在三角形ABC三边所在直线BC、CA、AB上各取一点D、E、F,若有(BD/DC)*(CE/EA)*(AF/FB)=1,则AD、BE、CE平行或共点。

斯特瓦尔特定理:在三角形ABC中,若D是BC上一点,且BD=p,DC=q,AB=c,AC=b,则AD^2=[(b*b*p+c*c*q)/(p+q)]-pq。

泰博定理:取平行四边形的边为正方形的边,作四个正方形(同时在平行四边形内或外皆可)。正方形的中心点所组成的四边形为正方形;取正方形的两条邻边为三角形的边,作两个等边三角形(同时在正方形内或外皆可)。这两个三角形不在正方形边上的顶点,和正方形四个顶点中唯一一个不是三角形顶点的顶点,组成一等边三角形;给定任意三角形ABC,BC上任意一点M,作两个圆形,均与AM、BC、外接圆相切,该两圆的圆心和三角形内接圆心共线。

凡·奥贝尔定理:给定一个四边形,在其边外侧构造一个正方形。将相对的正方形的中心连起,得出两条线段。线段的长度相等且垂直(凡·奥贝尔定理适用于凹四边形)。

西姆松定理:从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

❷ 数学必备的定理有哪些

是初中的还是小学的?
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边

❸ 数学十大定理

1。人生的痛苦在于追求错误的东西。所谓追求错误的东西,就是你在无限趋近于它的时候,才猛然发现,你和它是不连续的。
2。人和人就像数轴上的有理数点,彼此可以靠得很近很近,但你们之间始终存在隔阂。
3。人是不孤独的,正如数轴上有无限多个有理点,在你的任意一个小邻域内都可以找到你的伙伴。但人又是寂寞的,正如把整个数轴的无理点标记上以后,就一个人都见不到了。
4。人和命运的关系就像F(x)=x与G(x)=x^2的关系。一开始,你以为命运是你的无穷小量。随着年龄的增长,你才发现你用尽全力也赶不上命运的步伐。这时候,若不是以一种卑微的姿态走下去,便是结束自己的生命。
5。零点存在定理告诉我们,哪怕你和他站在对立面,只要你们的心还是连续的,你们就能找到你们的平衡点。
6。人生是一个级数,理想是你渴望收敛到的那个值。不必太在意,因为我们要认识到有限的人生刻画不出无穷的级数,收敛也只是一个梦想罢了。不如脚踏实地,经营好每一天吧。
7。有限覆盖定理告诉我们,一件事情如果是可以实现的,那么你只要投入有限的时间和精力就一定可以实现。至于那些在你能力范围之外的事情,就随他去吧。
8。痛苦的回忆是可以缩小的,但不可能消亡。区间套最后套出的那一个点在整个区间上微不足道,但一定是存在的,而且刻骨铭心。
9。我们曾有多少的理想和承诺,在经历几次求导的考验之后就面目全非甚至荡然无存?有没有那么一个誓言,叫做f(x)=e^x?
10。幸福是可积的,有限的间断点并不影响它的积累。所以,乐观地面对人生吧~

1不等式定律:
3两+1两>2两+2两>4两

2衰减指数定律:
食堂装修后开张和新学期开始后,饭菜质量和份量呈指数形式衰减。

3多功能定律:
食堂不仅具有普通食堂的功能,它还具有小卖部,录像厅,自习室,还有陪心情不爽的同学叫板等多种功能。

4拉面拉抻次数定律:
每个拉面师傅在拉面时的拉抻次数永远是恒定的,习惯是很难更改的。(以6食堂为例,拉面永远是拉七次下锅:拉面平均长度的均值为0.5米*2的7次方=64米)

5 免费汤定律:
因为根据分子的不规则运动,所以从理论上讲,如果用一缸水煮上一颗红豆,那么这就不再是一缸水,而是一缸能消暑的免费汤。

6互补定律:
打饭师傅的发福程度与打给你饭菜的份量互补,打给你饭菜的质量与份量互补,(例如,如果给你的牛肉很多,一定是嚼不动的,如果给你饭很多,一定是夹生的,如果给你菜很多,一定难以下咽)

7 唯一性定律:
如果食堂的师傅给你的饭菜足够质量和份量,而且你又不是很pp,那么一定是膳食大检查的人员在食堂里。

8随机性定律:
无论是经济快餐,汤煲,还是特色炒菜都有随机出现铁丝,头发,苍蝇,石头,蜈蚣或别的令你胃口全无的可能性,随机率不可预计。

9 随机性定律推论:
我们仅仅从食物中随机出现的杂物,就推断出食堂大师傅的一些特点:师傅大多是经常脱发,用金属铁丝洗碗,而且非常喜欢昆虫和树叶的标本。

10 相对论定律:
如果你感觉勺子筷子或者餐具不干净,请你闭上眼睛,心里默念“这是经过红外线消过毒的!”然后就干净了。

❹ 数学定理有哪些

1、三角形各边的垂直一平分线交于一点。

2、勾股定理(毕达哥拉斯定理)

勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c² 。

3、从三角形的各顶点向其对边所作的三条垂线交于一点

4、射影定理(欧几里得定理)

5、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分

6、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为M,则AH=2OM

7、三角形的外心,垂心,重心在同一条直线上。

8、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,

9、四边形两边中点的连线和两条对角线中点的连线交于一点

10、间隔的连接六边形的边的中点所作出的两个三角形的重心是重合的。

11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上

12、库立奇*大上定理:(圆内接四边形的九点圆)

圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:$r=sqrt{[(s-a)(s-b)(s-c)]/s}$s为三角形周长的一半

14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点

15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有$AB^2+AC^2=2(AP^2+BP^2)$

16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有$nxxAB^2+mxxAC^2=(m+n)AP^2+(mn)/(m+n)BC^2$

17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD

18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上

19、托勒密定理:

圆的内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和。 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质。

20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形

❺ 求数学定理名称、内容

数学定理列表:
数学定理列表(按字母顺序排列)
阿贝尔-鲁菲尼定理
阿蒂亚-辛格指标定理
阿贝尔定理
安达尔定理
阿贝尔二项式定理
阿贝尔曲线定理
艾森斯坦定理
奥尔定理
阿基米德中点定理
波尔查诺-魏尔施特拉斯定理
巴拿赫-塔斯基悖论
伯特兰-切比雪夫定理
贝亚蒂定理
贝叶斯定理
博特周期性定理
闭图像定理
伯恩斯坦定理
不动点定理
布列安桑定理
布朗定理
贝祖定理
博苏克-乌拉姆定理
垂径定理
陈氏定理
采样定理
迪尼定理
等周定理
代数基本定理
多项式余数定理
大数定律
狄利克雷定理
棣美弗定理
棣美弗-拉普拉斯定理
笛卡儿定理
多项式定理
笛沙格定理
二项式定理
富比尼定理
范德瓦尔登定理
费马大定理
法图引理
费马平方和定理
法伊特-汤普森定理
弗罗贝尼乌斯定理
费马小定理
凡�6�1奥贝尔定理
芬斯勒-哈德维格尔定理
反函数定理
费马多边形数定理
格林公式
鸽巢原理
吉洪诺夫定理
高斯-马尔可夫定理
谷山-志村定理
哥德尔完备性定理
惯性定理
哥德尔不完备定理
广义正交定理
古尔丁定理
高斯散度定理
古斯塔夫森定理
共轭复根定理
高斯-卢卡斯定理
哥德巴赫-欧拉定理
勾股定理
格尔丰德-施奈德定理
赫尔不兰特定理
黑林格-特普利茨定理
华勒斯-波埃伊-格维也纳定理
霍普夫-里诺定理
海涅-波莱尔定理
亥姆霍兹定理
赫尔德定理
蝴蝶定理
绝妙定理
介值定理
积分第一中值定理
紧致性定理
积分第二中值定理
夹挤定理
卷积定理
极值定理
基尔霍夫定理
角平分线定理
柯西定理
克莱尼不动点定理
康托尔定理
柯西中值定理
可靠性定理
克莱姆法则
柯西-利普希茨定理
戡根定理
康托尔-伯恩斯坦-施罗德定理
凯莱-哈密顿定理
克纳斯特-塔斯基定理
卡迈克尔定理
柯西积分定理
克罗内克尔定理
克罗内克尔-韦伯定理
卡诺定理
零一律
卢辛定理
勒贝格控制收敛定理
勒文海姆-斯科伦定理
罗尔定理
拉格朗日定理 (群论)
拉格朗日中值定理
拉姆齐定理
拉克斯-米尔格拉姆定理
黎曼映射定理
吕利耶定理
勒让德定理
拉格朗日定理 (数论)
勒贝格微分定理
雷维收敛定理
刘维尔定理
六指数定理
黎曼级数定理
林德曼-魏尔斯特拉斯定理
毛球定理
莫雷角三分线定理
迈尔斯定理
米迪定理
Myhill-Nerode定理
马勒定理
闵可夫斯基定理
莫尔-马歇罗尼定理
密克定理
梅涅劳斯定理
莫雷拉定理
纳什嵌入定理
拿破仑定理
欧拉定理 (数论)
欧拉旋转定理
欧几里德定理
欧拉定理 (几何学)
庞加莱-霍普夫定理
皮克定理
谱定理
婆罗摩笈多定理
帕斯卡定理
帕普斯定理
普罗斯定理
皮卡定理
切消定理
齐肯多夫定理
曲线基本定理
四色定理
算术基本定理
斯坦纳-雷姆斯定理
四顶点定理
四平方和定理
斯托克斯定理
素数定理
斯托尔兹-切萨罗定理
Stone布尔代数表示定理
Sun-Ni定理
斯图尔特定理
塞瓦定理
射影定理
泰勒斯定理
同构基本定理
泰勒中值定理
泰勒公式
Turán定理
泰博定理
图厄定理
托勒密定理
Wolstenholme定理
无限猴子定理
威尔逊定理
魏尔施特拉斯逼近定理
微积分基本定理
韦达定理
维维亚尼定理
五色定理
韦伯定理
西罗定理
西姆松定理
西尔维斯特-加莱定理
线性代数基本定理
线性同余定理
有噪信道编码定理
有限简单群分类
演绎定理
圆幂定理
友谊定理
因式定理
隐函数定理
有理根定理
余弦定理
中国剩余定理
证明所有素数的倒数之和发散
秩-零度定理
祖暅原理
中心极限定理
中值定理
詹姆斯定理
最大流最小割定理
主轴定理
中线定理
正切定理
正弦定理

❻ 考研数学一定义定理大全

高等数学1基础知识
一、三角函数
1.公式
同角三角函数间的基本关系式:
·平方关系:
   sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)
·商的关系:   
tanα=sinα/cosα   cotα=cosα/sinα
·倒数关系:   
tanα·cotα=1;   sinα·cscα=1;   cosα·secα=1   
三角函数恒等变形公式:
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

2.特殊角的三角函数值

0
1 0
0 1
0 1 不存在
不存在 1 0

只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。

3诱导公式:
函数
角A sin cos tg ctg
-α -sinα cosα -tgα -ctgα
90°-α cosα sinα ctgα tgα
90°+α cosα -sinα -ctgα -tgα
180°-α sinα -cosα -tgα -ctgα
180°+α -sinα -cosα tgα ctgα
270°-α -cosα -sinα ctgα tgα
270°+α -cosα sinα -ctgα -tgα
360°-α -sinα cosα -tgα -ctgα
360°+α sinα cosα tgα ctgα
记忆规律:竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割
即第一象限全是正的,第二象限正弦、正割是正的,第三象限正切是正的,第四象限余弦、余割是正的)

二、一元二次函数、方程和不等式

无实根

三、因式分解与乘法公式

四、等差数列和等比数列

五、常用几何公式

平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a+b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2 S=ah/2
 =ab/2·sinC
 =[s(s-a)(s-b)(s-c)]1/2
 =a2sinBsinC/(2sinA)
平行四边形 a,b-边长
h-a边的高
α-两边夹角 S=ah
 =absinα
菱形 a-边长
α-夹角
D-长对角线长
d-短对角线长 S=Dd/2
 =a2sinα
梯形 a和b-上、下底长
h-高
m-中位线长 S=(a+b)h/2
 =mh
圆 r-半径
d-直径 C=πd=2πr
S=πr2
 =πd2/4
扇形 r—扇形半径
a—圆心角度数 C=2r+2πr×(a/360)
S=πr2×(a/360)
圆环 R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径 S=π(R2-r2)
 =π(D2-d2)/4
椭圆 D-长轴
d-短轴 S=πDd/4

立方图形
名称 符号 表面积S和体积V
正方体 a-边长 S=6a2
V=a3
长方体 a-长
b-宽
c-高 S=2(ab+ac+bc)
V=abc
圆柱 r-底半径
h-高
C—底面周长
S底—底面积
S侧—侧面积
S表—表面积 C=2πr
S底=πr2
S侧=Ch
S表=Ch+2S底= Ch+2πr2
V=S底h =πr2h
圆锥 r-底半径
h-高 V=πr2h/3
球 r-半径
d-直径 V=4/3πr3
=πd3/6
S=4πr2
=πd2

基本初等函数
名称 表达式 定义域 图 形 特 性






y
C

0 x





随而异,但在上
均有定义 过点(1,1);
时在
单增;
时在
单减.







过点.
单增.
单减.






过点.
单增.
单减.






奇函数.








偶函数.








奇函数.

在每个周期
内单增






,

奇函数.

在每个周期
内单减.







奇函数.
单增.








单减.








奇函数.
单增.








单减.

极限的计算方法
一、初等函数:

二、分段函数:
基本初等函数的导数公式
(1) ,是常数
(2)
(3) ,特别地,当时,
(4) , 特别地,当时,
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

基本初等函数的微分公式
(1)、(为常数);
(2)、(为任意常数);
(3)、,特别地,当时,;
(4)、,特别地,当时,;
(5)、;
(6)、;
(7)、;
(8)、;
(9)、;
(10)、;
(11)、;
(12)、;
(13)、;
(14)、.
曲线的切线方程

幂指函数的导数

极限、可导、可微、连续之间的关系

条件A 条件B,A为B的充分条件
条件B 条件A,A为B的必要条件
条件A 条件B,A和B互为充分必要条件
边际分析
边际成本 MC =;边际收益 MR =;
边际利润 ML =,= MR—MC
弹性分析
在点处的弹性,
特别的,需求价格弹性:
罗尔定理
若函数满足: (1) 在闭区间连续;
(2) 在开区间可导;
(3) ,则在内至少存在一点,使.

拉格朗日定理
设函数满足:
(1) 在闭区间连续;
(2) 在开区间可导,
则在上至少存在一点,使得 .
基本积分公式
(1)
(2) 特别地:
(3)
(4) (有时绝对值符号也可忽略不写)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13) (或)
(14) (或)
(15) ,
(16) ,
(17) ,
(18) ,
(19) ,,
(20) ,,
(21) ,,
(22) ,.
常用凑微分公式
(1)、
(2)、
(3)、
(4)、
(5)、
(6)、
(7)、
(8)、
(9)、
(10)、
(11)、
(12)、

一阶线性非齐次微分方程的通解为

平面图形面积的计算公式

1)区域D由连续曲线
和直线x=a,x=b围成,其中
(右图)

2)区域D由连续曲线
和直线x=c,x=d围成,其中
(右图)

平面图形绕旋转轴旋转得到的旋转体体积公式

1 、绕x轴的旋转体体积(右图)

注意:此时的曲边梯形必须紧贴旋转轴.

2、绕y轴的旋转体体积(右图)

注意:此时的曲边梯形必须紧贴旋转轴.

由边际函数求总函数

总利润函数为。

多元复合函数的导数公式
设函数u =φ(x, y)、v =ψ(x, y)在点(x,y)有偏导数,函数z = f (u, v)在对应点(u, v)处可微,则复合函数z = f (φ(x, y),ψ(x, y))在点(x,y)的偏导数

两个特例:
z = f (u, v),:
z = f (u),u = u (x, y):
隐函数导数公式

二元方程所确定的隐函数:
三元方程F(x, y, z) = 0所确定的二元隐函数:,
1.确定函数定义域的主要依据:
(1)当f(x)是整式时,定义域为R;
(2)当f(x)是分式时,定义域是使分母不等于0的x取值的集合;
(3)当f(x)是偶次根式时,定义域是使被开方式取非负值的x取值的集合;
(4)当f(x)是零指数幂或负数指数幂时,定义域是使幂的底数非零或大于0的x取值范围;
(5)当f(x)是对数式时,定义域是使真数大于0的x取值的集合;
(6)正切函数的定义域是{};余切函数的定义域是{x|x≠kπ,k∈Z};
(7)当f(x)表示实际问题中的函数关系时还应考虑在此实际问题中x取值的实际意义.
2.求函数值域常用的方法有配方、换元、不等式、判别式、图像法等等.


阅读全文

与数学一级数定理有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:979
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1060