‘壹’ 请问lim(x趋向于正无穷大)arctanx的结果是多少
lim(x趋向于正无穷大)arctanx的结果是π/2因为,arctanx与tanx互为反函数,一个的定义域是另一个的值域。
可以先画出tanx的图像,然后,就可以判断出来。或者,可以直接arctanx的图像。。arctanx的值域是-π/2~π/2。
极限是高等数学中非常重要的概念,极限的思想贯穿高等数学始终。连续的定义、导数的定义、定积分的概念,还有无穷级数的敛散性等,都要用到极限的思想,因此可以说极限的思想是高等数学的灵魂。
数列极限定义
数列极限定义是按一定次序排列的一列数,这一列数叫做数列,如果当n无限增大时,数列{xn}无限接近某个确定的常数A,则称A为数列{xn}的极限。
数列可以看作自变量为正整数的函数,只有当n无限增大时,数列无限接近某个确定的常数A,才能说数列极限是存在的,此时数列收敛于A;否则若数列极限不存在,则称该数列发散。
判断数列极限是否存在,首先可以把数列的前几项写出来,这样有助于我们发现数列变化的规律。当数列极限是无穷大及数列极限不唯一时,都称数列是发散的。
‘贰’ 计算下列积分高等数学,要详细过程以及答案急用谢谢
分部积分,我给你写一下啊,稍等
‘叁’ 急求arctan的计算公式
反正切函数
目录
数学术语
定义
性质
图像
编辑本段数学术语
编辑本段定义
函数y=tanx,x∈(-π/2,π/2)的反函数,记作y=arctanx,叫做反正切函数。反正切函数是反三角函数的一种。
同样,由于正切函数y=tanx在定义域上不具有一一对应的关系,所以不存在反函数。
注意这里选取是正切函数的一个单调区间。
编辑本段性质
1,
定义域:R
值域:(-π/2,π/2)
单调性:增函数
奇偶性:奇函数
周期性:不是周期函数
2,
arctan(x+y)
<=
arctanx
+
arctany
=
arctan[Tan(arctanx
+
arctany)]
=
arctan[(x+y)/(1-xy)]
编辑本段图像
反正切函数的大致图像如图所示,显然与函数y=tanx,x∈(-π/2,π/2)关于直线y=x对称,且渐近线为y=π/2和y=-π/2
扩展阅读:
1
九年制义务教育课本
开放分类:
数学,三角函数,正切函数
‘肆’ arctan无穷等于多少
x趋近于正无穷大时,arctanx极限是π/2; x趋近于负无穷大时,arctanx极限是-π/2;但是x趋近于无穷大时,由于limx→-∝≠limx→+∝,所以arctan的正负无穷值是不存在的,只能无限趋近±π/2。
函数y=arctanx是反正切函数,是函数y=tanx的反函数。性质如下:
1、arctanx的定义域为R,即全体实数。
2、arctanx的值域为(-π/2,π/2)。
3、arctanx为单调增函数,单调区间为(-∞,﹢∞)。
arctan函数的概念:
Arctangent(即arctan)指反正切函数,反正切函数是反三角函数的一种,即正切函数的反函数。一般大学高等数学中有涉及。
arctan是正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx 或 y=tan-1x。它表示(-π/2,π/2)上正切值等于 x 的那个唯一确定的角,即tan(arctan x)=x,反正切函数的定义域为R即(-∞,+∞)。反正切函数是反三角函数的一种。
计算方法:设两锐角分别为A,B,则有下列表示:若tanA=1.9/5,则 A=arctan1.9/5;若tanB=5/1.9,则B=arctan5/1.9。如果求具体的角度可以查表或使用计算机计算。
‘伍’ arctanx当x=1时,怎么计算
当x=1时有arctan1等于kπ+π/4(k为整数)。
解:因为tanx与arctanx互为反函数,那么令y=arctan1,
则y=tanx=arctan1
那么可解得y=π/4+kπ,其中k为整数。
反三角函数的限制条件
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是间断的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
‘陆’ tanarctanx等于多少
tan (arctan x) =x。
正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx 或 y=tan-1x,叫做反正切函数。它表示(-π/2,π/2)上正切值等于 x 的那个唯一确定的角,即tan(arctan x)=x,反正切函数的定义域为R即(-∞,+∞)。反正切函数是反三角函数的一种。
正切定理
在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
法兰西斯·韦达(François Viète)曾在他对三角法研究的第一本着作《应用于三角形的数学法则》中提出正切定理。现代的中学课本已经甚少提及,例如由于中华人民共和国曾经对前苏联和其教育学的批判,在1966年至1977年间曾经将正切定理删除出中学数学教材。
‘柒’ arctanx是什么意思
Arctangent指反正切函数,反正切函数是反三角函数的一种,即正切函数的反函数。
反正切函数是反三角函数中的反正切,意为:tan(a)=b,等价于Arctan(b)=a。
积的关系:
sinα = tanα × cosα(即sinα / cosα = tanα )
cosα = cotα × sinα (即cosα / sinα = cotα)
tanα = sinα × secα (即 tanα / sinα = secα)
倍角半角公式:
sin ( 2α ) = 2sinα · cosα
sin ( 3α ) = 3sinα - 4sin & sup3 ; ( α ) = 4sinα · sin ( 60 + α ) sin ( 60 - α )
sin ( α / 2 ) = ± √( ( 1 - cosα ) / 2)
由泰勒级数得出
sinx = [ e ^ ( ix ) - e ^ ( - ix ) ] / ( 2i )
级数展开
sin x = x - x3 / 3! + x5 / 5! - ... ( - 1 ) k - 1 * x 2 k - 1 / ( 2k - 1 ) ! + ... ( - ∞ < x < ∞ )
‘捌’ arctgx 啥意思
arctgx即反三角函数
反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。
三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
(8)数学arctgx等于多少扩展阅读:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数。