导航:首页 > 数字科学 > 数学实数包括哪些

数学实数包括哪些

发布时间:2022-10-03 08:58:41

初中数学实数包括负数吗

实数包括复数。实数是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。

实数包括负数吗

除了虚数都是实数,实数包括负数。实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数的分类

实数运算法则

加法:同两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加,仍得这个数。

减法:减去一个数等于加上这个数的相反数。

乘法:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得零。几个不为零的有理数相乘,负因数有偶数个时积为正,负因数有奇数个时积为负,如果有一个因数为零,积就为零。

除法:除以一个不为零的数,等于乘以这个数的倒数;两数相除,同号得正,异号为负;零除以任意非零的数都得零 。

Ⅱ 数学里,自然数包括什么数实数包括什么数

自然数包括:0和正整数
实数包括:整数(正、负和0)和分数(正、负)

Ⅲ 什么是实数实数包括什么数

实数,是有理数和无理数的总称。

数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

(3)数学实数包括哪些扩展阅读:

在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。1871年,德国数学家康托尔第一次提出了实数的严格定义。

根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。以边长为1厘米的正方形为例,其对角线有多长。

在规定的精度下(比如误差小于0.001厘米),总可以用有理数来表示足够精确的测量结果(比如1.414厘米)。但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念,他们原以为:

任何两条线段(的长度)的比,可以用自然数的比来表示。

正因如此,毕达哥拉斯本人甚至有“万物皆数”的信念,这里的数是指自然数(1 , 2 , 3 ,...),而由自然数的比就得到所有正有理数,而有理数集存在“缝隙”这一事实,对当时很多数学家来说可谓极大的打击(见第一次数学危机)。

从古希腊一直到17世纪,数学家们才慢慢接受无理数的存在,并把它和有理数平等地看作数;后来有虚数概念的引入,为加以区别而称作“实数”,意即“实在的数”。

在当时,尽管虚数已经出现并广为使用,实数的严格定义却仍然是个难题,以至函数、极限和收敛性的概念都被定义清楚之后,才由十九世纪末的戴德金、康托等人对实数进行了严格处理。

Ⅳ "实数"是什么

原本的数称作“实数”——意义是“实在的数”。

包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。后来引入了虚数概念,与其对应

Ⅳ 数学里什么是实数

数学里是有理数和无理数的总称。

数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列。在实际运用中,实数经常被近似成一个有限小数。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

性质

(1)封闭性:实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。

(2)有序性:实数集是有序的,即任意两个实数、必定满足并且只满足下列三个关系之一ab。

(3)传递性:实数大小具有传递性,即若a>d,且b>c,则有a>c。

Ⅵ 实数分为什么

实数分为有理数和无理数。

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

特点:

所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。

在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

以上内容参考网络—实数

Ⅶ 初二数学什么是实数

包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

简单点的意思就是说是所有的数
什么数都可以

Ⅷ 实数包括哪些

实数,是有理数和无理数的总称。

数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

发展历史

在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。1871年,德国数学家康托尔第一次提出了实数的严格定义。

根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。

Ⅸ 在数学中什么叫实数

1、有理数和无理数统称为实数.
2、实数和数轴上的点是一一对应的
在数轴上,右边的点表示的数比左边的点表示的数大.
3、在实数范围内,相反数、倒数、绝对值的意义与有理数范围的相反数、倒数、绝对值的意义完全一样.
4、实数可以进行加、减、乘、除、乘方等运算,而且有理数的运算法则与运算律对实数仍然适用.实数理论千百年来,数学爱们都在为整个数学寻找一个可靠的逻辑基础而不懈努力,然而分析的算术化,是以实数为基础的.不弄清实数的本质,不给实数以明确的定义、建立实数大小、运算等理论,连续函数的性质就无法彻底弄清,甚至连柯西收敛准则的充分性也无法严格证明.
这就迫使数学家们加快建立数学理论的步伐.
实数理论的核心问题是对无理数的认识,早在19世纪前期,柯西就已感到定义无理数的重要性.他在《分析教程》中,把无理数定义为收敛的有理数列的极限,设{yn}是一列有理数,如果存在一个数y,yn-->y,那么y就是一个无理数.
这个定义存在逻辑上的毛病.因为有理数序列{yn}不收敛于无理数(即y为有理数),则定义不出无理数;不收敛于有理数,那得不承认y是无理数才行,才能定义它是无是数,这就犯了循环定义的错误.
19世纪60年代末以后,出现了几种不同的无理数定义,分别出自维尔期特拉斯、梅雷、康托和戴德金等人之手,但不论他们定义实数的具体方法有何不同,都符合以下三个条件:第一,把不理数当作已知,从有理数出发定义无理数;第二,所定义的褛的性质及其运算律,与有理数所具有的一三,这样定义的实数是完备的,即在极限运算下不会再出现新数.为了避免柯西理数定义中的错误,维尔斯特拉斯坚持了他的表态观点,曾引入"复合数"概念.并用复合数定义有理数.如3(2/3)由3α和2β组成,其中α=1是主要单位,元素β=1/3.一个数已知它由什么元素组成,以及每个元素出现的次数时,就完全确定了,维尔斯特拉斯继而定义无理数如√2定义为1α,4β1γ----康托与梅雷定义的无理数基本相同,以有理数为出发点引进新数类----实数.该数类包括有理数和无理数.在褛理论建树中,戴德金的实数理论是最完整的.人用有理数分割来定义实数这一思想来源于对直线连续性的考虑.人和康托大致同时提出了实数集与直线上的点一一对应假设.这一假设后来称为“康托-戴德金"公理,他想,直线上的有理点是不连续的,必然由无量数填补空位,才能使直线成为连续.如何才能把这些补空位的无理数表示出来?戴德金用全体有理数的一个分割,来表示一个无理数.
上面所说的几种无理数定义,都把有理数当作已知的,因为任何一个有理数,都可以写成两个整数之比,因此问题归结为整数.那么对于整数需不需要再下定义呢?对这个问题也产生了分歧,维尔斯特拉斯就认为没必要,有理数逻辑地归为一对整数,对整数的逻辑无须做进一步研究.
戴德金则不然,他在《数的性质与意义》一书中,利用集合论思想给出了一个整数理论,虽因过于复杂未被采用,却给皮亚诺以直接启示.
1889年,意大利数学家皮亚诺在他的《算术原理新方法》一书中,用公理方法给出了自然数理论,从而完成了整个数系逻辑化工作.
皮亚诺出生于都灵,曾任都灵大学讲师和教授,是一位数理逻辑学家.他不像逻辑主义者那样,主张把数学建立在逻辑上,而是主张把逻辑作为数学工具.
皮亚诺在《算术原理方法》一书中,使用了一系列符号,如用∈,NO和a+分别表示属于、包含、自然数类和a的下一个自然数等;给出了四个不加定义的原始概念:集合,自然数,后继数和属于;还提出了自然数的五个公理:
1)1是自然数;
2)1不是任何自然数的后继数;
3)每个自然数a都不一个后继数a+;
4)如果a+=b+,则a=b;
5)如果s是一个含有1的自然数集合,且当s含有a时,也含有a+,则s含有全部自然数.这个公理是数学归纳法的逻辑基础.
接着,皮亚诺根据自然数定义整数:设a,b为自然数.则数对(a,)即"a-b"定义整数.当a>b,a/span>
有了整数概念,再通过有序对定义有理数:若n,m为整数,则有序对(n,m)(m0)即n/m定义一个有理数.
这样,皮亚诺应用数学符号和公理方法,在自然数公理的基础上,简明扼要地建立起自然数系、整数系和有理数系.当然用公理的、逻辑的方法构造出来的数系,使一数学家感到很不自然.他们认为这是将本一清楚的概念"做了不可理解的推广,然而,实数理论的建立,谱写了19世纪数学史上辉煌的一章.

Ⅹ 初中数学实数概念

实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。

阅读全文

与数学实数包括哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059