A. 怎样学好数学
学数学,首先要学会怎样学,然后再去学
吃透课本法
很多同学觉得,数学课本上面的题目很简单,都是老师上课讲过的内容,下课以后,往往就把课本放在一边,去做其他一些他们认为难度更高的习题,刚开始我也是这样做的。可是到考试的时候往往是难题做出来了,简单的题目却容易失分.尤其是前面的选择题、填空题这样一些小题。所以要特别注重学习课本,把课本上每一道题都做到位,这也是我要讲的第一点。第二点就是课本上的基本概念和基本思路。课本上面不光是习题重要,更重要的是它的基本概念和基本思路。数学课本有很多黑体字的大概念,这些都是我们平时很注意的,但是在一些小字里面,往往有一些非常细微的概念和原理是容易被忽视的,而考试的时候,往往就是把那些我们忽视的问题拎出来考。而一考大家就“一片空白”。所以我们在看课本的时候,一定要把课本上的每一个字,每一个句子,即使很细小的一些原理都要看到。三角函数、立体几何、解析几何的习题中,有很多重要结论,都是应该记住的。吃透课本,不管怎么强调它的重要性都不为过。
知识网络法
数学知识点繁多,要做到有条不紊地把握知识点实属不易,需要用一条线将这些零散的知识点串起来。知识网络法可以概括为以下两种模式。第一类,公式推导法。总结必须掌握的公式,知其然也要知其所以然,利用公式间的相互关联进行推导。中考的知识点来源于课本,将课本上的例题改编一下,就可以得到一道中考题,将一些基本题或知识点综合一下,就可以变成一道难题。万变不离其宗,根据日常梳理的知识点,我们便可以将难点个个击破。第二类,构图记忆法,即用画图表的方式将知识点之间的关系、适用条件、特征等标注出来。从书中的一章一节,层层细分,对知识点进行归纳、总结,直到最终脱离书本也能回忆出个中的联系。这种方法听似枯燥、繁杂,实际操作时可以与具体习题(最好难度不大但有一定综合性)结合起来。构图记忆法注重的是基础,提高的是能力。
数学构建知识网络法
在解题过程中很多同学因为找不到思路常常无从下笔。数学题无外乎两类:求解题和证明题。求解题让你求的是一个结果,证明题让你证明的是一个结论。我个人比较推祟这样一种方法:将已知条件列出来,看看能推出哪些结论,而这些结论又可以看作条件,再看看这些新的条件又能导出哪些新的结论,一层一层,就像树干的分支一样,越来越多。既然可以顺向推导,同样也可以逆向推导。从你要求的结果或需要证明的问题出发,看看需要哪些条件才能得出所要的结果,而要得到这些条件,又需要哪些更多的条件,一层一层,反向思维。当树枝越伸越多时,最终会有两条交织在一起,此时题目也就迎刃而解了。开始使用这种方法时,的确比较费时,但相当有效,待逐渐熟练之后,往往能够一眼就看中问题的关键,迅速找到突破口。
选择题去掉选项法
解选择题有很多种方法,面对简单的选择题,也需要一些简单的技巧,这需要同学们平时在学习中慢慢摸索。但是我觉得解选择题最好的办法就是去掉选项法。培养自己的解题能力,也就是培养自己不被错误选项干扰的能力。尤其是面对一些比较难的、特别繁琐的选择题,我们可以把这些选项给去掉,把它当做填空题来做,把答案写出来之后,再从选项中去找,如果找不到的话,说明你肯定犯了错误。这样的话,还可以避免很多问题??比如有些同学容易看错题目,他做题目的时候,常常根据自己看错的一些数据去做,刚好选项里面有这样的答案,这样的话,就会选择错误答案;再者就是,有一些题目是理论性的选择题,可能它的选项本身就带有很大的误导性,去掉选项就不会受它的误导。
错题集法
除了典型例题,还需要重视自己出错的题目。错题集是许多成绩好的学生必备的,我也不例外,而在这里我强调的是如何充分利用自己的错题集。
错题大约可以分两种:一种是自己根本不会做,因为太难了,没有思路;另一种是自己会做,因为粗心而做错。我觉得,最有价值的错题是第二类。因为粗心也有许多种,我们也要分析它。第一,看错题目。是看错数字还是理解错题意?为什么会看错题?怎么样误解了题意?以后会不会犯同样的错?第二,切入点、思路出错,这样的思维解法根本不适合这类题目。第三,计算错误。为什么会算错?有没有方法杜绝?怎样才能真正做到细心?其实在高考中,有多少题目是你不会做的呢?最终的竞争,还是在于你究竟能做对多少。如果你能把自己粗心的错误杜绝,那么在高考中一定会赢得非常好的成绩。
主动寻求解题思路法
在学习过程中,我曾有这样的经历,有时见到一道题目一时找不到思路,就迫不急待去翻看答案,看答案时往往觉得答案的每一步都顺理成章,该用哪个定理,该用什么方法,非常简单,就自认为把题目已经理解透了。过几天再做这道题,还是无从下手。我觉得出现这种情况主要是因为我对这道题的接受是一个被动的过程。在这个过程中我只是机械地看到了具体解题过程,而没有真正理解解题思路。
主动寻求解题思路法与这种被动接受的学习方法正好相反,这种方法强调从简单习题入手,因为做简单的习题会比较轻松一些,简单的做出来之后再由浅入深。当在练习过程中遇到了难一点的题目时,有意识强迫自己不看答案、不看书套公式、不求助于别人(这些都是被动方法),而是静下心来,积极调动自己的大脑知识库,主动寻求解题思路。这样由浅入深地训练自己,加上对常见题型的归类分析,再见到数学、物理习题时就会在第一时间反应出该题所考查的知识点和思维方式,有得心应手的感觉。
知识点网络总结法
我学习数学的第一个方法是知识点网络总结法。平时做数学题时,一些题目往往会让我们感觉到无从下手,这个时候如果我们能联想到这道题目所考察的知识点,就可以以此为线索对症下药,找到解题的突破口。所谓的知识点网络总结法就是在平时做题时,如果遇到解答中出现困难的题目,就将与这道题目有关的解题方法和所考查的知识点在题目的旁边列出来,然后在本子上总结出来。这样经过一段时间的训练,在考试的时候看到题目就能联想到有关的知识点,并迅速找到相应的解题方法。使用这种方法一方面可以提高解题速度,为考生节约不少时间,另一方面做题的正确率很高,提高了解题命中率。
适当放弃法
“舍得,舍得,有舍才有得”,这是大家常说的一句话。对于数学这门学科来说,我认为要根据自己的实力,为自己准确定位,保证基础题全部答对,并适当放弃自己力不从心的高难题,这样达到智力资源的优化配置,才能取得较好的成绩。
每个人都有自己的长处和短处,扬长补短应该是一种比较有效的应试方法。俗话说“狗熊嘴大啃地瓜,麻雀嘴小啄芝麻”,我这个小嘴“麻雀”,在数学学习中没有多大的优势。在平时考试中,数学最后一道题对我而言难度就挺大的,我经常只是做出第一问,第二问基本上是无可奈何、屡战屡败。在中考中,我一看最后一道题的第二个问题挺难的,于是很快决定放弃了这个难啃的“地瓜”,并立刻回头检查前面已经做过的试题,幸运的是检查出做错的一道5分的选择题。或许,正是由于这样量力而行的战术,我保住了“芝麻”基础题,只在较难题目上失去了12分,其他题全部做对,做到了数学考试的超水平发挥
B. 如何学好数学
怎样学好数学的是十三种好习惯
方法
1、认真“听”的习惯。
为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。
2、积极“想”的习惯。
积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。
3、仔细“审”的习惯。
审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。
4、独立“做”的习惯。
练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。
5、善于“问”的习惯。
俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。
6、勇于“辩”的习惯。
讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。
7、力求“断”的习惯。
民族的创新能力是综合国力的重要表现,因此新大纲强调在数学教学中应重视培养学生的创新意识。教师应积极鼓励学生思考问题时不受常规思路局限,乐于和善于发现新问题,能够从不同角度诠释数学命题,能用不同方法解答问题,能创造性地操作或制作学具与模型。
8、提早“学”的习惯。
从小学生认识规律看,要获得良好的学习成绩,必须牢牢抓住预习、听课、作业、复习四个基本环节。其中,课前预习教材可以帮助学生了解新知识的要点、重点、发现疑难,从而可以在课堂内重点解决,掌握听课的主动权,使听课具有针对性。随着年级的升高、预习的重要性更加突出。
9、反复“查”的习惯。
培养学生检查的能力和习惯,是提高数学学习质量的重要措施,是培养学生自觉性和责任感的必要过程,这也是新大纲明确了的教学要求。练习后,学生一般应从“是否符合题意,计算是否合理、灵活、正确,应用题、几何题的解答方法是否科学”等几个方面反复检查验算。
10、客观“评”的习惯。
学生客观地评价自己和他人在学习活动中的表现,本身就是一种高水平的学习。只有客观地评价自己、评价他人,才能评出自信,评出不足,从而达到正视自我、不断反思、追求进步的目的,逐步形成辩证唯物主义认识观。
11、经常“动”的习惯。
数学知识具有高度的抽象性,小学生的思维带有明显的具体性,所以新大纲强调应重视从学生的生活经验中学习理解数学,加强实践能力的培养。在教学中,教师应强调学生手脑并用,以动促思,对难以理解的概念通过举实例加以解决,对较复杂的应用题通过画图找到正确的解答方法,对模糊的几何知识通过剪剪拼拼或实验达到投石问路的目的。
12、有心“集”的习惯。
学生在学习活动中犯错并不可怕,可怕的是同一问题多次犯错。为避免同一错误经常犯,有责任民的教师在教室里布置了错会诊专栏,有心计的学生建立错误的知识档案,将平时练习或考试中出现的错题收集在一起,反复警示自己,值得提倡。
13、灵活“用”的习惯。
学习的目的在于应用,要求学生在课堂上学到的知识加以灵活运用,既能起到巩固和消化知识的作用,又有利于将知识转化成能力,还能达到培养学生学习数学的兴趣的目的。
C. 怎样学好数学,应用题该怎样做
怎样学好初中数学?需要使用什么方式哪?
数学是很多的学生都在烦恼的问题,有很多的学生存在一定的问题,这个科目的分数非常低,那么怎样学好初中数学哪?有什么方式可以改善吗?
知识总结
1,听课
对于新的知识,一般都是在课堂上通过老师的讲述来了解的所以需要注重学习的效率,找打正确的方式,上课需要更随老师的讲课步骤,积极的了解老师所讲述的知识,需要发现自己解决问题的思路与老师有什么不同,发现之后需要及时的改善,并且在下课之后需要及时的进行复习,这样可以不留下任何的难点,在做作业的时候需要将老师所说的内容完全在脑海当中思索一边,需要正确的认识各种数学的计算方式,对于某种问题不懂的时候,需要冷静下来,然后进行全面的分析,一般情况之下是都可以回答出来的的,这就是怎样学好初中数学的第一步.
2,多练
想要学好数学,就需要多多的做一些练习题,完全明白各种问题的解决方式,需要从简单的题目开始,一般以书籍内容为正确的答案,进行反复的练习,空闲的时候可以做一些课外的题目,帮助提升自己的思路,可以准备一侧错题本,将所写过的错题记录下来,在回答问题的时候需要将精神集中起来,进入最好的状态,可以在考试当中超强的发挥,这就是怎样学好初中数学的第二部.
3,心态
对于考试来说,心态是非常重要要的,需要在考试之前全面的调整自己的状态以及心理的状态,让自己保持冷静的态度,改善自身混乱的情绪,在考试之前可以做一些练习题,将自己的状态调整到最佳,在考试之前需要进行复习,并且有空闲时间的话可以将自己错题本浏览一遍,以便于不会再错第二次,复习需要全面的进行,这就是怎样学好初中数学的第三部.
知识点
所以想要学好数学,需要多方面的努力,这与很多的因素有关,首先可以找到属于自己的学习方式,然后了解这个科目的特点,使自己有一定的了解之后,开始进行学习,相信通过本篇文章你应该知道怎样学好初中数学了吧!
D. 怎样才能学好数学
初中数学宝典,你知道学习数学最重要的是什么吗?
在初中学习数学这们课程的时候很多的学生都是比较烦恼的,因为这们课程是非常难的,并且难点非常多,很多的学生在刚开始学习的时候还可以更得上,但是过一段时间之后就会变得非常的吃力,那么你知道初中数学宝典是什么吗?我们来了解一下吧!
复习知识点
以上就是初中数学宝典的内容,当学习吃力的时候可以先复习一下之前的内容,当然这个时候之前记得笔记就可以用来复习了,这样可以更好的帮助我们学习后期的内容,并且可以改善学习吃力的问题.
E. 如何学好数学方法和技巧
众说周知,数学是不是对大家来说就是天书一样,尤其是到了高中,数学都不知道从那方面去学习,如何学好高中数学,其实学好高中数学方法很多,只要找到规律就知道数学并非是我们想的那么难。
1、课前预习,记笔记、做练习
高中数学学习最好的办法,就是把课前预习,但是这个访法很少人有这样的习惯,课前预习可以使我们提前了解将要学习的知识,不至于上课时候老师讲课一脸茫然不知道老师在讲什么,这样才会导致你数学学习不好的原因,课前预习就是加深听课时的理解,从而能够快速吸收老师讲的知识。
第一种情况是不是,老师上课讲的知识明明听得很明白了,但是,为什么自己一做题就不会或者就遇到困难呢?其是原因不在于老师,而是在于我们自己,因同学们数学成绩的差异,没有做好课前预习,把不懂的重要标记,到时候可以问老师。
第二种情况是不是,每天在做作业之前,把之前上课的笔记看了吗?我说说我是怎么做作业的,这个是我一个培训班肖博老师教我学习的方法,。,每天在做作业之前,一定要把当天数老师上课的笔记先看一看,看看你们能否坚持下去,我都坚持快一个月了,所以说学习方法很重要,对成绩会提到很大的作用。还有一个学习办法,不管课本上习题还是试卷一定要整理好,做好标记。
2、做题思路及课外学习
我们在做数学习题的时候,一定不要有这样的负担,不要为了成绩而去学习,学习主要是在于方法、态度、思路。在做题之前,想想这题应该怎么去做,想想什么方法才能把这个题做出来,先做,遇到问题一定要记下来,因为数学知识很多,不可能每个知识点都会去,应该有目的去攻最弱的知识点,加强学习,要是不行就可以报个培训班:
学好高中数学不是光靠课本上的知识和老师的讲解就够的,这是远远不够的,因为我们需要多多上培训班或者是买些课题多做做。
F. 怎么学好数学
一、要做什么?
首先,我们需要明确一个问题:怎样才能够得分?
对于数学考试而言,数学考试成绩由两层组成:“懂知识+会做题”。
所谓懂知识,即能够将课本和笔记中的公式记忆熟练,别人提问时候自己能够3-5秒内回答出来。有这一层积累,我们在做题时候就不会因为公式忘了或记错了,导致做题思路卡住,不能算出题目。一般而言,期末考试60分以下的,往往是公式记忆存在比较多的问题。
而60~90分孩子,往往在“会做题”领域有一定障碍,对于这些孩子而言,他们公式一问也能回答出来,但就是做题时候不会用,导致无法得分。那么对于他们而言,提升数学做题能力,多经历、积累和总结不同题型与做题技巧,则是努力的方向。
三、重点已经找到,有没有行之有效的,更具体的建议呢?
建议你从最近开始,做下面几件事情:
(1)笔记与课本中有关三角,数列,统计概率与空间几何平行垂直证明的定理,概念以及附加说明记忆熟练。这是我们保证做题时候自己思路的源泉。
(2)购买往年的模拟题,期末题目套卷。每天做一套试卷中的三角,数列,空间,统计概率大题。做完之后马上对答案,将自己内容和答案汇总对照,错误的进行改正。这个目的是增进我们的做题技巧与经验。
(3)不会的及时问。对于我们而言,可能我们条件看不懂,或者答案某些位置看不懂,此时如果自己能力无法应对情况下,一定要及时问同学或老师,让自己弄懂更多的内容。
(4)持之以恒。一般而言,在最开始做这件事情时候,往往是很不习惯,甚至比较痛苦的过程。但是这是我们增进自己做题能力与技巧的重要途径,因为只有多经历、多总结,才能够突破过往的自己,达到新的境界。很多时候,我们所做的选择,并不是 “正确”和“错误”,而是 “正确”和“容易”。
G. 如何学好数学
很多人认为文科是记忆性的科目,而理科不是,其实不然,就像数学,我认为数学要记的东西也很多,不记住定理、公式什么的,到考试时都不知道用什么只是去解。
所以我认为,要学好数学可以从下面几个方面去做做:
1、做好预习:预习课本的数学知识是非常重要的,通过预习,我们可以了解要学的基本内容、基本知识,掌握本节的知识网络,从而发现不理解、不清楚的问题,然后在听老师讲课时,既有超前意识,又有所侧重,对不理解不清楚的地方逐问题、逐重点听讲,再次寻找问题,效果比不预习就直接听老师讲课要好得多,同时看一些参考资料(我是用湖南大学出版社的《高中数学学考必备用书》《高中数学知识问答词典》,这个书很好,很详细)。
2、认真听课:在预习的基础上,听好课是非常关键的。
3、课后总结(复习):对老师讲的每一节课,必须利用当天的自习进行总结,整理在一个专门的笔记本上,从定义、定理、公式以及论证过程和典型例题等方面认真回顾和总结,形成锁链系统化,通过课后总结发现问题,及时记录下来,并利用当天自习问老师,尽量做到当天的问题当天解决,否则问题越积越多,你将逐步走到差生的行列,其实我们原来的差生就是这样形成的。
4、多做课后作业:课后作业是同学们对基础知识巩固、熟练、提高的一个锻炼过程,没有这个过程,不管你看的、听的多清楚、理解多深刻,往往也是纸上谈兵。不通过足量的作业训练,你就达不到一定的熟练程度,更谈不上巧了,所谓“熟能生巧”,就是说,只有在熟练的基础上,才能寻找一些简捷、巧妙的解题方法,才能解决好综合性较强的题目,也就是所谓的能力的提高。但是不要一味地区找难题做,要多做基础题,而且数量要多,数学这门科就是这样,一句话:你必须多练习(我的经验,本人虽然不是拿奥数金牌的水平,但是120,130分(满分150)还多没问题。
综合起来一句话:要学好数学,具体方法是:(十六字)
预习在先,重点听课,总结追踪,作业巩固!
最后想说的是:“兴趣”和“信心”是学好数学的最好的老师。这里说的“兴趣”没有将来去研究数学,做数学家的意思,而主要指的是不烦感,不要当做负担, 学习不是件轻松的事,有毅力,有耐力,有恒心,有雄心。勇往直前,少一点彷徨和烦恼,多一点理智和实干,明天的路,会更精彩!
H. 如何做“好的数学”
2003年初春的一天,我们到南开大学宁园访问了陈省身先生。陈老虽已年过九旬,但除了需要坐轮椅外,他依然精神矍铄,思维敏捷。
陈先生从小就喜欢看书,什么书都拿来读,从《古文观止》到桐城派的文章,从唐诗到宋词。他特别喜欢《资治通鉴》,看过许多遍。
“当然没有毛主席读得多。”陈老风趣地说。
在我们海阔天空地聊了一阵之后,他认为还需要做一些补充:“其实我是一个生性淡泊的人。我年轻时就想隐居,不愿与人有过多的往来,主要的心愿是留学,当时就知道了重要的发展在国外。留学以后看出数学是条路子,自己可以走,就在这方面发展了。我尽量不干涉别人的事,自己努力。”
“有一年我跟内人去参观罗汉塔,我就感慨地跟她说:‘无论数学做得怎么好,顶多是做个罗汉。菩萨或许大家都知道他的名字,罗汉谁也不知哪个是哪个人。所以不要把名看得太重。’”可见,陈老对名利之淡泊,为人处世之通达,不完全来自天性,也来自对世界、人生的哲理性思考。
陈老很健谈,但他最爱谈的仍然是数学。他总是谆谆嘱咐后学者要做“好的数学”。什么是“好的数学”?可以从不好的数学谈起。陈先生在一次讲演中举过一个“幻方”的例子:将1至9排成三行三列的一个方阵,使每行每列以及两对角线上的数字相加均为15。我们可以做到这一点,例如:
4 3 8
9 5 1
2 7 6
可惜幻方只是一个奇迹,它在数学中没有引起其他更普遍深刻的影响。相反地,另外一个奇迹,所有的圆、圆的周长和它的直径之比都是一个不变的数,数学上称之为圆周率,记作。这个结果可重要了,因为这个数渗透了整个数学!譬如,可以出现在下面的公式中:
/4=1-1/3+1/5-1/7+……
这个公式美极了!人们怎么也想不到由单数1,3,5……的组合可以产生圆周率。对于一个数学家来说,这个公式正如一幅美丽的图画或风景。
对的研究,引发了数学各个方面深刻的结果,是好的数学。幻方只是一个偶然现象,虽很巧妙,但不属于好的数学。与此相关,陈省身在一次报告中提及中学生数学奥林匹克竞赛的问题。他说,他是支持数学竞赛的,对数学竞赛的获奖者也一再给以鼓励,希望他们成功。但是数学竞赛的题目都不是好的题目,因为在两三个钟头里,青少年学生能做出来的技巧性题目,不可能有很深的含义。这样说,并不是说奥林匹克竞赛题目都出得不好,他认为,数学奥林匹克竞赛的奖只是一个能力的表现,离研究一个好的数学问题还差得很远,更不可以把奥林匹克数学竞赛获奖者等同于数学家。
陈省身引用了法国大数学家拉格朗日(1736-1813)的标准,认为好的数学问题应当满足两个条件:一是易懂,走在马路上向任何人都能讲清楚;二是难攻,这种数学问题必须相当困难,但又不是无法攻克的。一个数学问题易懂,往往说明这个问题直观,很基本,具有普遍性,不需附加很强的外在条件。难攻应当指问题比较深入,非一眼可以看穿。从这样的角度再来审视陈省身的数学成果,也许我们更容易理解其中的价值和意义了。
陈先生自己最得意的工作是高斯-博内公式的内蕴证明。高斯-博内公式可以看作平面上三角形的内角之和等于180°或者(弧度制)在高维曲面上的推广。高斯-博内公式告诉我们,曲面三角形的点曲率、线曲率及面曲率之和,即全曲率等于一个与有关的几何不变量。从定理的叙述中可以看出,这是曲面几何的多么基本、美丽的定理。
陈省身将高斯-博内公式推广到曲面,建立了曲面上各点的单位切矢量形成的空间的结构,称为“圆丛”。
讲到这里,陈先生很兴奋地说,“这个定理证明的原始想法在西南联大时就有。有了原始想法,再加上非常复杂的微分几何的计算,这需要用到当时看来比较高深的数学,像分析、代数几何、李群、拓扑等。对拓扑学的一些工具当时还没有完全搞清,为了证明这个定理,抓起来就用……”
高斯-博内公式的证明推动了大范围微分几何学的发展,而大范围微分几何学中的许多概念、理论又深刻影响了近代数学其他分支。“其影响遍及整个数学”,陈省身获沃尔夫奖的证书上如是说。
更令人惊奇的是,科学家们事后发现,微分几何中的这些新观念竟然与物理学中的“场论”惊人地相一致。着名物理学家杨振宁和米尔斯在1954年发表了《杨-米尔斯规范场论》,将物理中的引力、电磁力、弱力和强力,这四种基本力的能都归结为规范场。但直到20年后,科学家们才发现二者之间的紧密联系:原来纤维丛和联络可以作为规范场论的数学基础。
陈省身先生自豪地对我们说:“起码我们数学没有落后,数学为物理学提供了基础和工具。”
就在1975年弄清规范场和纤维丛的关系后,杨振宁驱车前往陈省身在伯克利的家中,向他报告这一消息。杨振宁说:“物理学的规范场正好是纤维丛上的联络,而后者是在不涉及物理世界的情况下发展出来的,这实在令我惊讶。”他又加了一句,“这即使我震惊,也令我迷惑不解,因为你们数学家能凭空想象出这些概念。”陈省身马上提出异议,“不,不。这些概念不是想象出来的。它们是自然的,也是实在的。”
陈先生以自己的学术活动实践着做“好的数学”的理想。他指出了数学的抽象性特点以及中国传统数学在这方面的不足。
陈先生指出:“我觉得中国古代数学都偏于应用,讲得过分一点,甚至可以说中国古代数学没有纯粹数学,都是应用数学,这是中国古代科学的一个缺点,这个缺点到现在还存在。应用当然很重要,但是许多科学领域的基本发现都在于基础科学。”
同样,陈老也恳切地指出我国在培养人才机制方面的某些缺陷。他对我们说,“中国培养人才方面最大的问题是近亲繁殖。”其实,40年前他就指出过这一点:“1930年以后,国内数学界有长足的进步……尤其浙大在陈(建功)、苏(步青)二先生主持下,学生甚多,工作极勤。可惜他们采取的态度,可名之为‘学徒制’,学生继续做先生的问题,少有青出于蓝的机会。要使科学发展,必须要给工作者以自由,这是值得深思的。”70年后的今天,学徒制的影子不是仍然随处可见吗?可见克服体制的和社会的习惯势力有多么的不易!今天,我们有许多人在做科学工作,更有一些人在做“科学管理”的工作,但是,如果我们不明白科学的本质是什么,如果我们不明白科学发展的原动力在哪里,我们就无法理解陈老所说的“要使科学发展,必须要给工作者以自由。”