导航:首页 > 数字科学 > 数学分析148什么概念

数学分析148什么概念

发布时间:2022-10-03 15:09:28

㈠ 数学分析的核心问题是什么

数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。数学分析的研究对象是函数,当然核心就是分析函数

㈡ 什么是数学分析

‍‍

《数学分析》课程是一门面向数学类专业的基础课。学好数学分析(和高等代数)是学好其他后继数学课程如微分几何,微分方程,复变函数,实变函数与泛函分析,计算方法,概率论与数理统计等课的必备的基础。作为数学系最重要的基础课之一,数学科学的逻辑性和历史继承性决定了数学分析在数学科学中举足轻重的地位,数学的许多新思想,新应用都源于这坚实的基础。数学分析出于对微积分在理论体系上的严格化和精确化,从而确立了在整个自然科学中的基础地位,并运用于自然科学的各个领域。同时,数学研究的主体是经过抽象后的对象,数学的思考方式有鲜明的特色,包括抽象化,逻辑推理,最优分析,符号运算等。这些知识和能力的培养需要通过系统、扎实而严格的基础教育来实现,数学分析课程正是其中最重要的一个环节。我们立足于培养数学基础扎实,知识面宽广,具有创新意识、开拓精神和应用能力,符合新世纪要求的优秀人才。

从人才培养的角度来讲,一个学生能否学好数学,很大程度上决定于他进大学伊始能否将《数学分析》这门课真正学到手。本课程的目标是通过系统的学习与严格的训练,全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。微积分理论的产生离不开物理学,天文学,几何学等学科的发展,微积分理论从其产生之日起就显示了巨大的应用活力,所以在数学分析的教学中,应强化微积分与相邻学科之间的联系,强调应用背景,充实理论的应用性内容。数学分析的教学除体现本课程严格的逻辑体系外,也要反映现代数学的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法,提高学生的数学修养。复旦大学有非常好的生源,吸引了众多优秀的学生,使得实现这一培养目标与要求成为可能。另一方面,许多优秀的学生受教学计划限制,学习的是《高等数学》这一课程。但他们对于学习《数学分析》以提高自己的数学修养有着强烈的愿望(其中一部分通过转专业成为数学类专业的学生)。我们推出的《数学分析原理》课程应运而生,为这一部分学生提供了一个恰当的学习提高机会。

‍‍

㈢ 小学数学的基本概念都有哪些

统计概率与小学数学教学

北京师范大学教育学院 刘京莉

《全日制义务教育数学课程标准》(实验稿)中较大幅度地增加了“统计与概率”的内容。因为在信息社会,收集、整理、描述、展示和解释数据,根据情报作出决定和预测,已成为公民日益重要的技能。因此小学数学加入这部分内容是完全必要的,本文将探讨的问题是小学教师应明确哪些基本概念,使教学既具有科学性同时又符合学生的认知特点;如何使学生在形成和解决现实世界问题的过程中,发展统计意识、发展用统计的方法解释数据、表达及交流信息的能力,以及用多种方式来收集、整理和展示他们的思考的能力;统计与概率与小学其它部分的内容是如何联系的。

一、基本概念

1.描述统计。

通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。

2.概率的统计定义。

人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的: 左右。这里的“大量重复”是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:

可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。

例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90%;

某类产品平均每1000件产品中大约有10件废品,则我们说该产品的废品率为1%。在小学数学中用概率的统计定义,一般求得的是概率的近似值,特别是次数不够大时,这个概率的近似值存在着一定的误差。例如:某地区30年来的10月6日的天气记录里有25次是秋高气爽、晴空万里,问下一年的10月6日是晴天的概率是多少?

因为前30年出现晴天的频率为0.83,所以概率大约是0.83。

3.概率的古典定义。

对某一类特殊的试验,还可以从另一个角度求它的概率。抛掷一枚硬币时,试验的结果有2种:出现正面、出现反面;由于硬币是均匀的,通过直观分析可以看出出现正面和反面的可能性相同,都是。进一步研究:

某试验具有以下性质

(1)试验的结果是有限个(n个)

(2)每个结果出现的可能性是相同的 (硬币、骰子是均匀的,抛掷时出现每一面的可能性都相同)

如果事件A是由上述n个结果中的m个组成,则称事件A发生的概率为m/n。

例:掷一颗均匀的骰子,求出现2点的概率。

由于这个试验满足概率的古典定义的两个条件,且n=6,m=1,∴出现2点的概率是。

又:求出现偶数点的概率?出现偶数点这一事件包含3个结果,2点、 4点、6点。m=3

出现偶数点的概率是,即。

概率的古典定义不用大量地去试验,只要试验的结果为等可能的有限个的情况,通过分析找出m、n,其概率就可以求出了,其优点是便于计算,但概率的古典定义不如概率的统计定义适用面广,如抛掷一个酒瓶盖子时,就不满足出现每一面的可能性都相同的条件,因此出现正面的概率就不能用概率的古典定义去求,而要用统计定义去近似地求它的概率。

在小学数学的教学中,根据小学生的认知水平,应避免学习过多或艰深的术语,从小学低年级开始应该非形式地介绍概率思想,而非严格的定义、单纯的计算,因此,在小学经常用“可能性”来代替“概率”这个概念。但作为教师应该懂得它的意义,否则就会出笑话。有的教师让学生在课上做 20次抛掷硬币的试验,希望学生能得到出现正面的可能性是,因为抛掷的次数少,所以要得出10次正面,是很难做到的,概率的统计定义一般得出的是概率的近似值。

二、在学习统计与概率的过程中发展学生的能力

统计的内容是用数字描述和解释我们周围的世界,应结合学生生活的实际,如:可以设计成一个活动,使学生主动地投入其中;提出关键的问题;搜集和整理数据;应用图表来表示数据;分析数据;作出推测,并用一种别人信服的方式交流信息。同时体会对数据的收集、处理会获得某些新的信息。

例如:组织一次班会活动,目的是增进同学之间的互相了解和交流。首先让学生们自己选题,希望了解哪些信息:“同学们每天怎么来上学?”;“每个月都有多少同学过生日?”;“同学们喜欢读哪类图书?”;“同学们的爱好是什么?”;“我们最喜爱的运动”;“我们最喜爱的动物”…然后学生们分组去调查收集数据,用表格归纳整理,并且制成各种统计图:如:

从统计图可以知道,喜欢动物故事的同学最多,根据这个统计结果,班里可以组织一个动物研究会,办一个动物图片展览,到野生动物园去参观等。全班同学还可以把各种图表制成墙报、手抄报把自己的班级介绍给全校其他同学等。

三、统计、概率与小学其它内容的联系

例1

上面各图中表示黑色区域的分数分别为;;;,小学生即使没有学习几何图形的概念也可以通过分数的意义知道2号黑色区域最容易投中,因为根据分数的意义它占总面积的比最大,为。

例2

从红球所占的比例来看,1号袋为; 2号袋为;3号袋为击,因此相比之下,1号袋最容易抽出红球。

例3下面是用扇形统计图统计的资料

对小学生来讲,扇形统计图的难点在于不同的圆心角所代表的部分的百分数表示及百分数表示的圆心角的度数,而对于—上面图中有特殊圆心角时,可避开圆心角,用分数、百分数的意义得出喜欢英语课的,科学课的,数学课的;参加球类兴趣小组的有50%;参加乐队的18%。

从上面的例子可以看出,统计与概率可以为发展和运用比、分数、百分数和小数这些概念提供背景。因此我们可以用建构的方式,建立这部分内容与小学其它知识的联系和建构有意义的认知结构,从而更深入、更灵活地学习。

总之,在小学,统计与概率的教学既要具有科学性又要符合小学生的认知特点,同时,它还是解决问题的有力工具,它也是架起与其它内容之间的桥梁。

和差问题

已知两个数的和与差,求这两个数的应用题,叫做和差问题。一般关系式有:

(和-差)÷2=较小数

(和+差)÷2=较大数

例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?

(24+4)÷2

=28÷2

=14 →乙数

(24-4)÷2

=20÷2

=10 →甲数

答:甲数是10,乙数是14。

差倍问题

已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。基本关系式是:

两数差÷倍数差=较小数

例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨?

分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:

(40-5×2)÷(3-1)-5

=(40-10)÷2-5

=30÷2-5

=15-5

=10(吨) →第一堆煤的重量

10+40=50(吨) →第二堆煤的重量

答:第一堆煤有10吨,第二堆煤有50吨。

还原问题

已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。

还原问题是逆解应用题。一般根据加、减法,乘、除法的互逆运算的关系。由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。

例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?

分析:如果第二天刚好售出剩下的一半,就应是19+12吨。第一天售出以后,剩下的吨数是(19+12)×2吨。以下类推。

列式:[(19+12)×2-12]×2

=[31×2-12]×2

=[62-12]×2

=50×2

=100(吨)

答:这个仓库原来有大米100吨。

置换问题

题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。

例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?

分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。

列式:(2000-1880)÷(20-10)

=120÷10

=12(张)→10分一张的张数

100-12=88(张)→20分一张的张数

或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。

盈亏问题(盈不足问题)

题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。

解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:

当一次有余数,另一次不足时:

每份数=(余数+不足数)÷两次每份数的差

当两次都有余数时:

总份数=(较大余数-较小数)÷两次每份数的差

当两次都不足时:

总份数=(较大不足数-较小不足数)÷两次每份数的差

例1、解放军某部的一个班,参加植树造林活动。如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗?

分析:由条件可知,这道题属第一种情况。

列式:(14+4)÷(7-5)

=18÷2

= 9(人)

5×9+14

=45+14

=59(棵)

或:7×9-4

=63-4

=59(棵)

答:这个班有9人,一共有树苗59棵。

年龄问题

年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是:

成倍时小的年龄=大小年龄之差÷(倍数-1)

几年前的年龄=小的现年-成倍数时小的年龄

几年后的年龄=成倍时小的年龄-小的现在年龄

例1、父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?

(54-12)÷(4-1)

=42÷3

=14(岁)→儿子几年后的年龄

14-12=2(年)→2年后

答:2年后父亲的年龄是儿子的4倍。

例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?

(54-12)÷(7-1)

=42÷6

=7(岁)→儿子几年前的年龄

12-7=5(年)→5年前

答:5年前父亲的年龄是儿子的7倍。

例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁?

(148×2+4)÷(3+1)

=300÷4

=75(岁)→父亲的年龄

148-75=73(岁)→母亲的年龄

答:王刚的父亲今年75岁,母亲今年73岁。

或:(148+2)÷2

=150÷2

=75(岁)

75-2=73(岁)

鸡兔问题

已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。

一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:

(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数

(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数

例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?

3k W UEw9I0

R,@ F/|1V7YWd-r0

Gb(e(o/X3QE&dL$Z0 凤凰博客h7IM?pJ'u7NV

'IG\ rf Y E0
(64-2×24)÷(4-2)

=(64-48)÷(4-2)

=16 ÷2

=8(只)→兔的只数

24-8=16(只)→鸡的只数

答:笼中的兔有8只,鸡有16只

凤凰博客3@8Zp|S5|+U



牛吃草问题(船漏水问题)

若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?

例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?

分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)

=(150-125)÷(10-5)

=25÷5

=5(头)→可供5头牛吃一天。

150-10×5

=150-50

=100(头)→草地上原有的草可供100头牛吃一天

100÷(10-5)

=100÷5

=20(天)

答:若供10头牛吃,可以吃20天。

例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?

(100×4-50×6)÷(100-50)

=(400-300)÷(100-50)

=100÷50

=2

400-100×2

=400-200

=200

200÷(7-2)

=200÷5

=40(分)

答:用7部同样的抽水机,40分钟可以抽干这口井里的水。

公约数、公倍数问题

运用最大公约数或最小公倍数解答应用题,叫做公约数、公倍数问题。

例1:一块长方体木料,长2.5米,宽1.75米,厚0.75米。如果把这块木料锯成同样大小的正方体木块,不准有剩余,而且每块的体积尽可能的大,那么,正方体木块的棱长是多少?共锯了多少块?

分析:2.5=250厘米

1.75=175厘米

0.75=75厘米

其中250、175、75的最大公约数是25,所以正方体的棱长是25厘米。

(250÷25)×(175÷25)×(75÷25)

=10×7×3

=210(块)

答:正方体的棱长是25厘米,共锯了210块。

例2、两啮合齿轮,一个有24个齿,另一个有40个齿,求某一对齿从第一次接触到第二次接触,每个齿轮至少要转多少周?

分析:因为24和40的最小公倍数是120,也就是两个齿轮都转120个齿时,第一次接触的一对齿,刚好第二次接触。

120÷24=5(周)

120÷40=3(周)

答:每个齿轮分别要转5周、3周。

分数应用题

指用分数计算来解答的应用题,叫做分数应用题,也叫分数问题。

分数应用题一般分为三类:

1.求一个数是另一个数的几分之几。

2.求一个数的几分之几是多少。

3.已知一个数的几分之几是多少,求这个数。

其中每一类别又分为二种,其一:一般分数应用题;其二:较复杂的分数应用题。

例1:育才小学有学生1000人,其中三好学生250人。三好学生占全校学生的几分之几?

答:三好学生占全校学生的。

例2:一堆煤有180吨,运走了。走了多少吨?

180×=80(吨)

答:运走了80吨。

例3:某农机厂去年生产农机1800台,今年计划比去年增加。今年计划生产多少台?

1800×(1+)

=1800×

=2400(台)

答:今年计划生产2400台。

例4:修一条长2400米的公路,第一天修完全长的,第二天修完余下的。还剩下多少米?

2400×(1-)×(1-)

=2400××

=1200(米)

答:还剩下1200米。

例5:一个学校有三好学生168人,占全校学生人数的。全校有学生多少人?

168÷=840(人)

答:全校有学生840人。

例6:甲库存粮120吨,比乙库的存粮少。乙库存粮多少吨?

120÷=120×=180(吨)

答:乙库存粮180吨。

例7:一堆煤,第一次运走全部的,第二次运走全部的,第二次比第一次少运8吨。这堆煤原有多少吨?

8÷(-)

= 8÷

=48(吨)

答:这堆煤原有48吨。

工程问题

它是分数应用题的一个特例。是已知工作量、工作时间和工作效率,三个量中的两个求第三个量的问题。

解答工程问题时,一般要把全部工程看作“1”,然后根据下面的数量关系进行解答:

6q1U]7in!S7x0
凤凰博客tr IJ0OYWV

P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作时间=工作量

'F5q/f,z5b@y0
工作量÷工作时间=工作效率

凤凰博客q!q1Nc3E-n`a9[Q$M

工作量÷工作效率=工作时间

凤凰博客9FA*o d#`7I!l

例1:一项工程,甲队单独做需要18天,乙队单独做需要24天。如果两队合作8天后,余下的工程由甲队单独做,还要几天完成?

N W5l,VjH`|0
凤凰博客+ZO'R HhI

凤凰博客hq$TU!bO$rEQ
凤凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷

=×18

=4(天)

答:(略)。

凤凰博客1Q0RO&]%owG

例2:一个水池,装有甲、乙两个进水管,一个出水管。单开甲管2小时可以注满;单开乙管3小时可以注满;单开出水管6小时可以放完。现在三管在池空时齐开,多少小时可以把水池注满?

|5W.WuC3p0
凤凰博客 SX}9q7|f

凤凰博客UO`8_%F(u8Br

"[6Xr3MHv)I0 1÷(+-) 凤凰博客I@ ?b&W+CD

=1÷

=1(小时)

答:(略)

凤凰博客o Sj4ON:}2\/a+N

百分数应用题

这类应用题与分数应用题的解答方式大致相同,仅求“率”时,表达方式不同,意义不同。

例1.某农科所进行发芽试验,种下250粒种子。发芽的有230粒。求发芽率。

答:发芽率为92%。

㈣ 数学分析包括哪些

一. 数学分析中关于概念的问题• 概念的形成需要一个过程。与人生哲理等概念不同,数学分析概念具有叠加性,也就是说新概念是在旧概念叠加的基础上来认识的。概念是数学分析中的一个根本问 题,不是靠背,而是在不断地运用中逐渐形成的,须经过比较、实践、摸索、总结、归纳等过程,最后建立一个完整的概念。这个过程甚至可以说是痛苦的,漫长的 一个阶 段。• 概念具有长期性。每个概念都有一个失败— 认识 —再失败的过程,伴随着你对这个概念的错误理解,在挫折中不断加深的。• 概念是随着一个人知识的增加而不断深入的。学数学分析对一个人建立完整的思维方式很重要,随着对不同数学分析概念的深入理解,人们处理问题的方式可以越来越趋于严谨。• 要建立一个数学分析的概念网。数学分析是一个个概念的点阵,所有的相关的、从属的概念要在头脑中形成一个网络。学概念要把不能纳入其中的或相关概念认识清楚。总概念中各相关概念是怎样发展的要有一个清晰的脉络。• 从不同的层面上来理解一个数学概念。有比较才有认识,对于一个数学分析概念要擅于从正面、侧面、上面、下面 ... 展开全部>
热心网友 | 2013-04-18
0
0
数学分析课程有一个特点是重要、枯燥。重要是显而易见的,数学分析作为专业基础课程,对其它后继课程的学习至关重要;同时它又是枯燥乏味的,这似乎是一对矛盾,要处理这对矛盾,就要解决一个数学分析学习当中的技巧性问题和心理问题。当然不可能人人都能把数学分析学好,由于各人的性向不同,有的人倾向于人文学科,有的人倾向于逻辑思维,有的人倾向于空间思维,有的人则倾向于动手能力….各人的倾向性不一样,擅长的方 面也各不相同,对数学分析能达到的程度也不一样。一. 数学分析中关于概念的问题?? 概念的形成需要一个过程。与人生哲理等概念不同,数学分析概念具有叠加性,也就是说新概念是在旧概念叠加的基础上来认识的。概念是数学分析中的一个根本问 题,不是靠背,而是在不断地运用中逐渐形成的,须经过比较、实践、摸索、总结、归纳等过程,最后建立一个完整的概念。这个过程甚至可以说是痛苦的,漫长的 一个阶 段。?? 概念具有长期性。每个概念都有一个失败— 认识 —再失败的过程,伴随着你对这个概念的错误理解,在挫折中不断加深的。?? 概念是随着一个人知识的增加而不断深入的。学数学分析对一个人建立完整的思维方式很重要, ... 展开全部>
热心网友 | 2013-04-18
0
0
等待您来回答
化学心情下的 Android 手机里都装了啥
回答:2|2014-12-15
大一高数题 例五 求详解
回答:0|2014-12-15
高数,积分
回答:1|2014-12-15
分析化学 求答案?
回答:0|2014-12-15
想考当地炼油厂 笔试有语文 数学 物理 化学 哪位大神告诉一下大概哪一部分呀 20
回答:0|2014-12-15
回答更多问题>>
求助关于"数学分析包括..."的问题

㈤ 大学课程中的数学分析很难吗数学分析是什么

2020年春季学期微课郭雨辰数学分析(超清视频)网络网盘

链接:

提取码: vn5b 复制这段内容后打开网络网盘手机App,操作更方便哦

若资源有问题欢迎追问~

㈥ 数学分析能干什么

数学分析的作用:
数学分析(英语:mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函数等的一般理论为主要内容,并包括它们的理论基础(实数、函数、测度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。 数学分析研究的内容包括实数、复数、实函数及复变函数。
数学分析是由微积分演进而来,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微积分中也包括许多数学分析的基础概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其几何有关,不过只要任一数学空间有定义邻域(拓扑空间)或是有针对两物件距离的定义(度量空间),就可以用数学分析的方式进行分析。

㈦ 数学分析

不错的教材有:中科大史济怀《数学分析教程》(习题难度较大,网上有史济怀给科大少年班上这本书的视频,可以看看,很不错),
复旦陈纪修《数学分析》,
北大张筑生《数学分析新讲》(以泛函的观点来写数分,不错),
北大周民强、方企勤《数学分析》(看过周民强实变函数论的人很多,但是看过他数分的就不错了,因为他的数分教材已经没有再出版,只有北航、北大等学校用复印版,周民强老兄最喜欢玩技巧,所以这本书难度不小),
复旦欧阳光中《数学分析》(很老的教材),
南大梅加强《数学分析》(梅加强老师这本书分析味很浓,技巧性强,值得推荐),
国外的不错的有:菲赫金哥尔兹《微积分教程》(老一辈数学工作者没有不知道的),卓里奇《数学分析》(内容丰富,清华用此书作为教材,功底不够,看着书是在找虐),阿黑波夫《数学分析讲义》,Rudin《数学分析原理》(华师的教材别看了,太垃圾)
强烈推荐辛钦的《数学分析八讲》(齐民友翻译)!
辅导书:谢惠民《数学分析习题课讲义》,周民强《数学分析习题演练》,裴礼文《数学分析中的典型问题和方法》,至于吉米多维奇,建议看由谢惠民等人翻译的那套,其余的都太垃圾,特别是华科出版的那套,比起工科高数还不如

㈧ 为什么我的数学只有148

请说明背景,什么级别的数学,满分多少。

如果需要进行分析,请提供更多内容,比如你考试的试卷。

祝好运,望采纳。

㈨ 数学分析是什么学科

数学分析(Mathematical Analysis)是数学专业的必修课程之一,基本内容是微积分,但是与微积分有很大的差别。 微积分学是微分学(Differential Calculus)和积分学(Integral Calculus)的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学(Analysis),或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问。 早期的微积分,由于无法对无穷小概念作出令人信服的解释,在很长的一段时间内得不到发展。柯西(Cauchy)和后来的魏尔斯特拉斯(weierstrass)完善了作为理论基础的极限理论,使微积分逐渐演变为逻辑严密的数学基础学科,被称为“Mathematical Analysis”,中文译作“数学分析”。

㈩ 数学分析究竟在讲些什么

数学分析又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。

它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

相关联系

微积分理论的产生离不开物理学,天文学,经济学,几何学等学科的发展,微积分理论从其产生之日起就显示了巨大的应用活力,所以在数学分析的教学中,应强化微积分与相邻学科之间的联系,强调应用背景,充实理论的应用性内容。

数学分析的教学除体现本课程严格的逻辑体系外,也要反映现代数学的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法,提高学生的数学修养。

阅读全文

与数学分析148什么概念相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059